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SKOLIAD no. 103
Robert Bilinski

Please send your solutions to the problems in this edition by 1 Febru-
ary, 2008. A copy of MATHEMATICAL MAYHEM Vol. 5 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

We received solutions to Skoliad 96 and 97 from Govinda Murali,
student, St.Joseph’s Public School, Cherthala, India, which arrived too late
to be considered for publishing.

In this issue, we present the Team Questions from the 6 annual CNU
Regional Mathematics Contest. We thank Ron Persky, C.N.U., Newport
News, VA.

6™ Annual CNU Regional High School
Mathematics Contest (2005)

1. To the right are two zigzag shapes made from iden-

tical little squares 1 cm on a side. The first shape has <§2§2§>

6 squares and a perimeter of 14 cm. The second has 9

squares and a perimeter of 20 cm. What is the perime- M
ter of the zigzag shape with 35 squares?

2. Three cards each have one of the digits from 1 through 9 written on
them. When the three cards are arranged in some order, they make a three
digit number. The largest number that can be made plus the second largest

number that can be made is 1233. What is the largest number that can be
made?

3. You begin counting on your left hand starting with the thumb, then the
index finger, the middle finger, the ring finger, then the little finger, and back
to the thumb, and so on. What is the 2005t finger you count?

4 7
4 A quadrilateral circumscribes a circle. Three of its
sides have length 4, 9, and 16 cm, as shown. What is 9
the length in cm of the fourth side? 16

5. A pizza is cut into six pie-shaped pieces. Trung

can choose any piece to eat first, but after that, each 4’
piece he chooses must have been next to a piece that

has already been eaten (to make it easy to get out of

the pan). In how many different orders could he eat

the six pieces?
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6. The picture shows an 8 x9 rectangle cut into three

pieces by two parallel slanted lines. The three pieces 8
all have the same area. How far apart are the slanted

lines?

9
7. Find a positive integer N so that there are exactly 25 integers x satisfying
N
2 <~ <5.
Zr

8. Amy, Bart, and Carol ate some carrot sticks. Amy ate half the number
that Bart ate, plus one third the number that Carol ate, plus one. Bart ate
half the number that Carol ate, plus one-third the number that Amy ate, plus
two. Carol ate half the number that Amy ate, plus one-third the number that
Bart ate, plus three. How many carrot sticks did they eat altogether?

9. A motorized column is advancing over flat country at the rate of 15 kilo-
metres per hour. The column is 1 kilometre long. A dispatch rider is sent
from the rear to the front on a motorcycle travelling at a constant speed. He
returns immediately at the same speed and his total time is 3 minutes. How
fast is he going?

10. Find the remainder when the polynomial & + 3 4+ 2° + 227 + 28" + 2243
is divided by 22 — 1.

11. Determine the perimeter of a right triangle with hypotenuse H and
area A.

12. When a positive integer n is divided by 3, the remainder is 1. When
n + 1 is divided by 2, the remainder is 1. What is the remainder when n — 1
is divided by 6?

6'®m¢ concours CNU Régional

de Mathématiques Secondaires (2005)
1. On retrouve 3 droit deux formes en zigzag fait de
tuiles carrées identiques de 1cm de c6té. La premiére
forme a 6 carrés et un périmétre de 14 cm. La se-
conde a 9 carrés et un périmétre de 20 cm. Quel est m
le périmétre du zigzag ayant 35 carrés ?
2. Trois cartes ont chacune un des chiffres de 1 4 9 écrit dessus. Quand les
trois cartes sont arrangées dans un ordre, elles forment un nombre 2 trois

chiffres. Le plus grand de ces nombres additionné du deuxiéme plus grand
donne 1233. Quel est le plus grand nombre qui peut étre fait ?

3. On commence 3 compter sur la main gauche avec le pouce, I'index, le
majeur, I’annulaire, I’auriculaire puis on revient au pouce et ainsi de suite.
Quel est le 2005°™¢ doigt utilisé ?
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4_ 9
4. Un quadrilatére circonscrit un cercle. Trois de ses
cotés ont pour longueur 4, 9 et 16 cm comme illustré. 9
Quel est la longueur du quatriéme coté ? 16

5. Une pizza est coupée en six morceaux. Trung

peut choisir n’importe quel morceau pour commen- 4’
cer, mais aprés cela, chaque morceau choisi doit étre

a cOté d’un morceau qui a déja été choisi au préalable

(pour simplifier la sortie du plat). De combien de

maniéres peut-il manger sa pizza?

6. L’image montre un rectangle 8 x 9 coupé en trois

piéces par deux lignes paralléles obliques. Les trois 8
morceaux ont tous la méme aire. Quelle est la distance

qui sépare les lignes obliques ?

9
7. Trouver un entier positif IV tel qu’exactement 25 entiers z satisfont 2

2 <N <5
X

8. Amy, Bart et Carol ont mangé des mini-carottes. Amy a mangé la moitié
du nombre A Bart, plus un tiers du nombre a Carol plus un. Bart a mangé la
moitié du nombre A Carol, plus un tiers du nombre 2 Amy plus deux. Carol
a mangé le méme nombre qu’Amy plus un tiers du nombre a Bart plus trois.
Combien de mini-carottes ont-ils mangé ensemble ?

0. Une colonne motorisée est en train d’avancer en terrain plat au rythme de
15 kilométres par heure. La colonne est longue de 1 kilométre. Un courrier
est envoyé de l'arriére vers ’avant sur une motocyclette roulant i vitesse
constante. Il retourne immédiatement 3 la méme vitesse et son parcours a
duré 3 minutes. Quelle était sa vitesse ?

10. Trouver le reste de la division du polyndome z +x3 +2° + 227 + 28! 4 2243
par 2 — 1.

11. Déterminer le périmétre d’'un triangle rectangle ayant une hypothénuse
de H et une aire de A.

12. Quand un entier n est divisé par 3, le reste est 1. Quand n 4+ 1 est divisé
par 2, le reste est 1. Quel est le reste quand n — 1 est divisé par 6?

—_—— N r—— S ———



260

Next we give the solutions to the 2006 Maritime Mathematics Contest
[2006 : 481-483].

2006 Maritime Mathematics Contest

1. Ato o’clock, the hour and minute hands on a clock form a right angle.
After 9 o’clock, what is the next time at which the clock hands form a right
angle?

Official solution, modified by the editor.

The diagrams at right show the hands of a
clock at 9:00 (top diagram) and again the next time
they form a right angle (bottom diagram). The
next time appears to be a little past 9:30.

Let = be the number of minutes after 9:00
the next time the hands form a right angle. The
hour hand completes one revolution in 12 hours;
hence, in = minutes, it moves through _r

12 x 60
revolutions. Similarly, since the minute hand
takes 60 minutes to complete one revolution, it
moves through x /60 revolutions in  minutes. In
the interval from 9:00 to the required time, the
minute hand has moved through exactly half a
revolution more than the hour hand. Therefore,

x n 1
60 720 2’
which yields 11z = 360, or x = 32 . Thus, the
required time is 32% minutes after 9:00.

2. Fora positive number such as 3.14, we call 3 the integer part and 0.14
the fractional part. Find a positive number such that the fractional part, the
integer part, and the number itself are three consecutive terms

(a) in an arithmetic sequence; (b) in a geometric sequence.
(The sequence aq, as, as, a4, ... is called arithmetic if there is a number d
such that a; — ay = a3 — az = a4 — az = ... = d; it is called geometric if
there is a number r # 0 such that az/a; = az/az = a4/az =...=1r.)

Official solution, modified by the editor.

Let = be a positive number. Let n be its integer part and y its fractional
part. Thus, x = n + y, where n is an integer and 0 < y < 1.

(a) We want to find « so that y, n, and x are consecutive terms in an
arithmetic sequence.

First suppose that 0 < < 1. Then n = 0 and £ = y. The numbers y,
n, and z are not terms in an arithmetic sequence in this case.
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Now assume = > 1. Thenn > 1and y < n < z. In order for y, n,
and « to be consecutive terms in an arithmetic sequence, we require

n—y =x—n = d, ¢))

for some real number d. Since x = n + y, we can eliminate z in (1) to get
n —y =y = d. Then 2y = n. Since n is a positive integer and 0 < y < 1,
this equation is satisfied only whenn = 1and y = % Thus, the only possible

valueforzisz =n+y=1+ % =3.

(b) We want to find = so that y, n, and = are consecutive terms in
a geometric sequence. As in part (a), we see that this does not happen if
0<xz<1l Soweassumex > 1. Thenn >landy <n < =z.

In order for y, n, and x to be consecutive terms in a geometric sequence,

We require
n

=r, @)

z
Yy n
for some r # 0. Since x = n + y, we can eliminate z in (2) to get

n

— y _
5—1"‘”—"". (3)

Note that y cannot be 0, since this would make n/y undefined. So 0 < y < 1.
Therefore, n/y > nand 1+ (y/n) < 1+ (1/n) < 2 (since n > 1). Thus,

n < =1+Y < 2,
n

n
" <
But we know that n is a positive integer. The only possibility satisfyingn < 2
isn =1.

Setting n = 1 in (3), we get 1/y = 1 + y, which can be rewritten as
y? 4+ y — 1 = 0. By the Quadratic Formula,

y = -1+ /12 —a(1)(-1) _ -1++/5
= = 5 )

2(1)
Since y > 0, we must have y = %\/g Thus, the only possible value for
vise—nty—14 —142“/5 _ 1+2\/5‘

3.A rectangular tank having length 60 cm, width 60 cm, and height 40 cm is
filled with water to a depth of 15 cm and rests on a horizontal table. Let A,
B, C, and D in cyclic order be the four bottom corners of the tank. Suppose
that the edge BC is slowly raised so that the edge AD remains on the table.
As water flows out, the tank is raised until the edge AB makes an angle of
60° with the table. The edge BC is then lowered until the tank once again
rests on the table. At this point, what is the depth of water in the tank?
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Official solution.

Consider the situation when the tank has
been raised so that the edge AB makes an angle B
of 60° with the table. If water did indeed spill
from the tank while it was being raised, the
water now reaches the level of EF, where FE is a
top corner of the tank (the corner above A) and
F is a point on AB, as shown in the diagram. A
(Note that, since the tank has been raised beyond 45°, |AF| is less than
|AE| = 40, and since |AB| = 60, point F' does indeed lie on AB.)

Since EF is parallel to the table top, ZEFA = 60°. Hence,

|AE| = |AF|tan60° = |AF|V3,

or |AF| = |AE|/V/3 = 40/+/3.
The volume of water in the tank at this point is equal to the area of
A AEF multiplied by 60 cm (the dimension of the tank perpendicular to

AAEF). Thus, the volume of water is 1 x 40 x % X 60 = 4?2;_”0 cm3. The

original volume of water is 15 X 60 x 60 = 54000 cm?, which is greater than

% cm3. Therefore, some water does indeed spill from the tank, and the
48000

volume of the remaining water is cm3.

3
Let d be the final depth of water in the tank. Considering the volume

of water remaining in the tank, we have d x 60 x 60 = 4f/°‘§]0, which implies

that d = 2. Thus, the final depth of water in the tank is % cm.

E F
60°

3v3 V3
4 Suppose that the positive integers are written in a 7 8 9 10
spiral as shown. Relative to the number 1, where does 6 1 2 11
the number 2006 appear? (For example, 10 appears 5 4 3 12
one unit up and two units to the right of 1.) ... 14 13

Solution by Natalia Desy, student, Palembang, Indonesia, modified by the
editor

The numbers on the diagonal going up to the right are 1, 9, 25, ...,
which are the squares of the odd positive integers. The closest odd square
to 2006 is 452 = 2025. Since 45 = 2 X 22 + 1, we see that 2025 lies 22
units up and 22 units to the right of 1. But 2006 is located 2025 — 2006 = 19
positions to the left of 2025. Therefore, the position of 2006 is 22 units up
and 3 units to the right of 1.

5A square pair is a pair (x, y) of positive integers such that x4y and zy are
both perfect squares. For example, (5, 20) is a square pair since 5 + 20 = 25
and 5 x 20 = 100 are both perfect squares. Show that no square pair exists
in which one of the numbers is 3.

Official solution, modified by the editor.

Suppose that 3 and x constitute a square pair. Then 3 4+ =z = a? and
3x = b? for some positive integers a and b. Since 3z is a perfect square, x
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must be of the form 3¢? for some positive integer c. Substituting x = 3¢?
into 3 + = = a?, we obtain 3(1 + ¢?) = a?; thus, 1 4 ¢? must contain 3 as a
factor. We will show that this is not possible.

When we divide c by 3, the remainder must be 0, 1, or 2. If it is 0,
then ¢ = 3k for some integer k; this gives 1 4+ ¢ = 1 + 9k2, which does
not have 3 as a factor (since 3 is a factor of 9k2). If the remainder is 1, then
c = 3k + 1 for some integer k; this gives 1 + ¢? = 9k2 4 6k + 2, which does
not have 3 as a factor (since 3 is a factor of 9k2 + 6k). If the remainder is 2,
then ¢ = 3k + 2 for some integer k; this gives 1+ c2 = (9k% + 12k + 3) + 2,
which does not have 3 as a factor (since 3 is a factor of 9k2 + 12k + 3).

6. Find all solutions in real numbers z and y for the system of equations:

20z+y—-2) = yl-y+2),
22(y—1)+y*(x—1) = zy—1.

Official solution.

Lettinga = x — 1 and b = y — 1, the given equations become

2(a+b) = (b+1)(a—b+2),
(a+1)?*b+(b+1)%a = (a+1)(b+1)—1.

Expanding and simplifying the second equation gives ab(a + b + 3) = 0;
thus,a =0,b=0,0ra+ b= —-3.

If a = 0, the first equation becomes 2b = (b + 1)(—b + 2), which is
equivalent to b2 + b — 2 = 0. Factoring gives (b + 2)(b — 1) = 0. Thus,
b=1lorb=-2.

If b = 0, the first equation becomes 2a = a + 2; thus, a = 2.

If a+b = —3, we can set a = —b — 3 in the first equation to get
2(—3) = (b+ 1)(=b — 3 — b + 2), which simplifies to 2b% + 3b — 5 = 0.
Factoring gives (2b+5)(b—1) = 0. Thenb = —% orb=1. Sincea = —b—3,
we obtain a = —% and a = —4, respectively.

To summarize, the equations have the following five solutions:

a b x Yy
0 1 1 2
0 -2 1 -1
2 0 3 1
_1]_5 1| _3
2 2 2 2
—4 1 -3 2

An incomplete solution was received.

_—_—m NS —e————

That brings us to the end of another issue. This month’s winner of a
past Volume of Mayhem is Natalia Desy. Congratulations, Natalia! Continue
sending in your contests and solutions.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The Assistant
Mayhem Editor is Ian VanderBurgh (University of Waterloo). The other staff
members are John Grant McLoughlin (University of New Brunswick), Monika
Khbeis (Ascension of Our Lord Secondary School, Mississauga), Eric Robert
(Leo Hayes High School, Fredericton), Larry Rice (University of Waterloo),
and Ron Lancaster (University of Toronto).

—_—— S ———

Mayhem Problems

Please send your solutions to the problems in this edition by 1 January 2008.
Solutions received after this date will only be considered if there is time before
publication of the solutions.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

—_—— N r—— S ———

M301. Proposed by D.E. Prithwijit, University College Cork, Republic of
Ireland.

The general term of a sequence is t,, = n? + 20, for n > 1. Show that
for all n > 1, the greatest common divisor of ¢,, and ¢,,1 must be a divisor
of 81.

M302. Proposed by Babis Stergiou, Chalkida, Greece.

A triangle ABC has ZABC = ZACB = 40°. 1f P is a point in the
interior of the triangle such that /ZPBC = 20° and ZPCB = 30°, prove
that BP = BA.

M303. Proposed by Neven Juri¢, Zagreb, Croatia.

A curious relation among squares states that the sum of n 4+ 1 consecu-
tive squares, beginning with the square of n(2n + 1), is equal to the sum of
the squares of the next n consecutive integers. (For example, whenn = 1 we
have 32 4+ 42 = 52, and when n = 2 we have 102 + 112 4+ 122 = 132 4 142))
Show that this property holds for any n > 1.
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M304. Proposed by Mihaly Bencze, Brasov, Romania.

Let a, b, and c be real numbers such that both a+ b+ c and ab+ bc+ca
are rational numbers. Show that a* + b* + ¢ is a rational number if and only
if the product abc is a rational number.

M305. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Find all real solutions to the following system of equations:

Ve+y+vz = 3,
VT +yy+2vVz = 3,
o’V +y’Vy+22vz = 3.

M306. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Find all solutions to the following addition problem, in which each let-
ter represents a distinct digit:

T E N

T E N

N I N E

E I G H T
+ T H R E E
F O R T Y

M301. Proposé par D.E. Prithwijit, University College Cork, République
d’Irlande.

Soit t,, = n? 4+ 20, pour n > 1, le terme général d’une suite. Montrer
que pour tout n > 1, le plus grand commun diviseur de ¢,, et ¢,,4; doit étre
un diviseur de 81.

M302. Proposé par Babis Stergiou, Chalkida, Gréce.

Soit ABC un triangle avec ZABC = ZACB = 40°. Si P est un point a
I'intérieur du triangle de sorte que /ZPBC = 20° et /PCB = 30°, montrer
que BP = BA.
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M303. Proposé par Neven Juri¢, Zagreb, Croatie.

Une curieuse relation entre les carrés de nombres naturels montre
que la somme de n + 1 carrés consécutifs, commencant par le carré de
n(2n + 1), est égale a2 la somme des carrés des n entiers consécutifs
suivants. (Par exemple, sin = 1 ona 32 +4% = 52 etsin = 2o0na
102 + 112 4+ 122 = 132 + 142.) Montrer que cette propriété est vraie pour
toutn > 1.

M304. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit a, b et c trois nombres réels tels que les sommes a + b + c et
ab + bc + ca sont des nombres rationnels. Montrer qu’alors a* + b* 4 c*
est un nombre rationnel si et seulement si le product abc est un nombre
rationnel.

M305. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Trouver toutes les solutions réelles du systéme d’équations suivant :

Ve+Jy+vz = 3,
Ve +yJy+2v/z = 3,
2?vVz +y* Yy +2°Vz = 3.

M306. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,

St. John’s, NL.

Trouver toutes les solutions du probléme d’addition suivant, dans
lequel chaque lettre représente un chiffre distinct :

T E N

T E N

N I N E

E I G H T
+ T H R E E
F O R T 'Y
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Mayhem Solutions

Some readers pointed out that the solution to M225 which appeared in
[2006 : 496-7] was incorrect. We apologize for this. At this point, we do
not have a solution to the problem.

E
M251. Proposed by K.R.S. Sastry,
Bangalore, India.

Let «, 3, v be the angle measures at F
angles A, B, C, respectively, in AABC.
On the sides of AABC, externally, are
triangles DBC, EAC, and FBA as in the
diagram.

Prove that AD = EF if and only if

oa=T/2.
/ D

Combination of solutions by Hasan Denker, Istanbul, Turkey; and Jean-
David Houle, student, McGill University, Montreal, QC.

It can be seen that triangles ABC and DBC are congruent. From this
we conclude that AB = DB and AC = DC. Let AG and DG he the
altitudes to BC in triangles ABC and DBC, respectively. We can then
further conclude that AG = ABsin3 and GD = CDsiny = ACsin~.
Consequently,

AD = AG+ GD = ABsin 4+ ACsin~. @

In AACE we have AC/ sina = EA/ sin~, from which it follows that
EA = AC'sin~y/sin «. Similarly, in AAFBwehave AF = ABsin3/sina.
Since « + 8+ v = w, we have EF = EA + AF, and we obtain

AC sin~y + ABsin g
sin o sina

Using equation (1), we conclude that EF = AD/sin a.

Now, if « = =/2, then EF = AD. Conversely, if EF = AD, then
sina = 1, which gives @ = 7 /2 (since 0 < a < 7). Thus, EF = AD if and
only if & = 7/2.

Also solved by HOUDA ANOUN, Bordeaux, France; COURTIS G. CHRYSSOSTOMOS
and BOTIS A. JIANNHS, Larissa, Greece; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA;

VEDULA N. MURTY, Dover, PA, USA; and ALEX REMOROQV, student, William Lyon Mackenzie
Collegiate Institute, Toronto, ON. There was one incorrect solution submitted.

EF =

M252. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Let x, y, z be positive real numbers. Prove that

Gromm) +(ram) +Crom) 2 2
Yy S ryz z S ryz x S ryz - ’
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Essentially the same solution by Mohammed Aassila, Strasbourg, France;
Jean-David Houle, student, McGill University, Montreal, QC; D. Kipp
Johnson, Beaverton, OR, USA; Salem Maliki¢, student, Sarajevo College,
Sarajevo, Bosnia and Herzegovina; Phil McCartney, Northern Kentucky Uni-
versity, Highland Heights, KY, USA; Alex Remorov, student, William Lyon
Mackenzie Collegiate Institute, Toronto, ON; and Panos E. Tsaoussoglou,
Athens, Greece.

Applying the AM-GM Inequality, we obtain the following inequalities:

4 _Z >

Y N Y \3/ zyz '’
g Zr

z

+ > 2, /-2
Jryz zYxyz '
z Yy _ Ry
= >
x + Jryz T JTYz

We can then conclude that

2 2
T z Y z Y
(5 + mez) + (Z + Y, myz) (m + mez)

yx zy
> 4 (WW o+ WW) .
Applying the AM-GM Inequality to the right side of this last inequality, we
obtain

Tz yx zy rz yx zy
4 4. . . =12.
<y‘3/wyz + zYxyz + :c,/wyz) 3€/y\3/wyz zYryz xYryz
Thus,

2 2 2
T z Yy T z ]
(y + ?/:vyz) + (z + ?/:vyz) + (w + ,‘V:Byz) = 12
Note that equality holds if and only if x = y = z.

Also solved by ZAFAR AHMED, BARC, Mumbai, India; ARKADY ALT, San Jose, CA, USA;
SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; DIONNE
BAILEY, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo,
TX, USA; ROY BARBARA, Lebanese University, Fanar, Lebanon; MIHALY BENCZE, Brasov,
Romania; QUANG CAO MINH, Nguyen Binh Khiem High School, Vinh Long, Vietnam; SHI
CHANGWEI, Xi‘an City, Shaan Xi Province, China; COURTIS G. CHRYSSOSTOMOS, Larissa,
Greece; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; RICHARD
I. HESS, Rancho Palos Verdes, CA, USA; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD,
Portales, NM, USA; KEE-WAI LAU, Hong Kong, China; MATTI LEHTINEN, National Defence
College, Helsinki, Finland; VEDULA N. MURTY, Dover, PA, USA; JOEL SCHLOSBERG, Bayside,
NY, USA; and KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong, India.

Bencze actually outlined a solution for a more general problem: If 1, x2, ..., n are
positive real numbers, then we have

(o3
) <E+L> > 20
f T2 Yax1x2 +* n -

cyclic
for all « € (—o0,0) U (1, co0). Of course, the current problem is the case n = 3 and o = 2.
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M253. Proposed by Fabio Zucca, Politecnico di Milano, Milano, Italy.

Consider the set of lattice points {(x, y)} where = and y are integers
suchthat 0 < x < 7and 0 < y < 7. Two points are selected at random
from this set. All points have the same probability of being selected and the
points need not be distinct. Find the probability that the area of the triangle
(possibly degenerate) formed by these two points and the point (0, 0) is an
integer (possibly 0).

Solution by Alex Remorov, student, William Lyon Mackenzie Collegiate
Institute, Toronto, ON.

Let us denote the area of a triangle XY Z by [ XY Z]. Recall that for a
triangle with vertices A(xq,vy1), B(x2,y2), and C(x3,ys),

1 1 y1 1
[ABC] = > det |z2 y2 1
r3 ys 1

1
= §|’131y2 + @2ys + T3y1 — T2y1 — T3Y2 — T1Ys| -

For the purpose of our problem, let the two points selected at random be
P(a,b) and Q(c,d). If O is the origin, then [PQO] = %|ad — be|. In order
for [PQO] to be an integer, |ad — bc| must be even, and therefore, ad and
be must have the same parity. This will occur in the following two cases:

Case 1. ad and bc are both odd.

This is true if and only if a, b, ¢, and d are all odd. Since a, b, ¢, and d

belong to the set {0, 1, 2, 3, 4, 5, 6, 7}, the probability that they are all odd
3332~ 16°
Case II. ad and bc are both even.

This is true if and only if a and d are not both odd and b and ¢ are not
both odd. The probability that a and d are not both odd is %, and the same
is true for b and c. Therefore, the probability that ad and bc are both even
is2.8 =2

Since Case I and Case 11 are mutually exclusive, the probabhility that the
area of the triangle is an integer is -- + = = 2.

Also solved by HASAN DENKER, Istanbul, Turkey; RICHARD I. HESS, Rancho Palos
Verdes, CA, USA; and D. KIPP JOHNSON, Beaverton, OR, USA. One incorrect solution was
also submitted.

M254. Proposé par Edward T.H. Wang, Université Wilfrid Laurier,
Waterloo, ON.

Evaluer la somme Sizg06 = Z (— 1)’c [On rappelle que

(k+1)'
n!:n-(n—l)---3-2-1;parexemple 6!=6-5-4-3-2-1=1"720.]
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Solution par Jean-David Houle, étudiant, Université McGill, Montréal, QC.

Pour k£ > 1, nous savons que

k-3  k(k+1) k41 2 1 1 2

(k+1)! — (k+1)! (+1)! (+1)! (k-—1)! kK (+1)

1 1 1 1
- <(kz—1)! _(k+1)!>_(k!+(kz+1)!) ‘

Par manipulations algébriques, on obtient :

2006 v 3
Sa006 = Y (-1F——=
= (k+ 1)!

2006 (__ ) 2006 ( 1) 2006 (__ )k 2006 ( 1)
= (Z(k_l)v Z(k+1)v> <Z +Z(k+1)v>

2006 ( 2004 ( 1)k: 1 1
= —14+1+ kz_:a k — 1)' Z (k + 1)! 2006! ~ 2007!

2006
| (— Z (- 1)’chl 1
(k + 1)! + 20071
k=2
1 1 1
- (2006! - 2007!) B (_1 + 2007!)
1 2 2007 — 2 2005
— _ = — 1 = ——— 1 = 1
006! _ 20071 T 2007! 20071 T

Autres solutions soumises par RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; et
VEDULA N. MURTY, Dover, PA, USA. Deux solutions incorrectes ont aussi été soumises.

M255. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

The line with slope X > 0 acts like a
mirror to a ray of light coming along a line
parallel to the z—axis. Determine the slope

of the reflected ray.

Solution by D. Kipp Johnson, Beaverton, OR, USA.
Let the ray of light hit the mirror at

point A, let the z-intercept of the mirror

be B, and let the reflected ray of light hit A 5
the z-axis at C. If the acute angle formed

by the mirror and a horizontal line is 6, 9

then A = tan . Since the angle of incidence g =10 4 26

and the angle of reflection are equal, we have
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/BAC = ZABC = 0. Then the exterior angle of AABC at vertex C has
measure 260, and the slope of the reflected ray is thus
2tané 2\
tan20 = 5o = .
1 —tan?0 1— )2
(If the slope of the mirror is 1, then the reflected ray has undefined slope
since it is vertical.)
Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; HASAN DENKER,
Istanbul, Turkey; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; JEAN-DAVID HOULE,

student, McGill University, Montreal, QC; and ALEX REMOROYV, student, William Lyon
Mackenzie Collegiate Institute, Toronto, ON.

M256. Proposed by the Mayhem Staff.

Find a quadratic polynomial f(x) such that, if n is a positive integer
consisting of the digit 5 repeated k times, then f(n) consists of the digit 5
repeated 2k times. (For example, f(555) = 555555.)

Solution by Morgan Lynch and Lacey K. Moore, Angelo State University, San
Angelo, Texas, USA.

Let f(z) = az? + bx + c. Using the given information we obtain the
following system of linear equations:

f(5) = 25a+5b+c = 55,
f(55) = 3025a+55b+c = 5555,
f(555) = 308025a + 555b+ ¢ = 555555.

Solving this system, we determine that, a = %, b =2, and ¢ = 0. Thus,

f(®) = 22+ 22 = x(fx+2).

Note that:
. — 1 2 .. k—1\ __ 10k7—1
55---55 = 5(1+10" +10%+...+10 )_5< 5 )
k times
= 2(10*—1).
We can now verify our equation:
F(3(0f —1)) = (5(10" — 1)) [3 (510" — 1)) +2]
_ 5 _ 5 _
= 2(10* —1)(10* +1) = 2(10%* —1) = 55---55 .

2k times

Also solved by HOUDA ANOUN, Bordeaux, France; COURTIS G. CHRYSSOSTOMOS,
Larissa, Greece; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; AMY HOLLINGER and
CORRIE MEYER, Southeast Missouri State University in Cape Girardeau, Missouri, USA; JEAN-
DAVID HOULE, student, McGill University, Montreal, QC; D. KIPP JOHNSON, Beaverton, OR,
USA; GUSTAVO KRIMKER, Universidad CAECE, Buenos Aires, Argentina; and ALEX REMOROV,
student, William Lyon Mackenzie Collegiate Institute, Toronto, ON. One incorrect solution was
also submitted.
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Problem of the Month

Ian VanderBurgh

This month’s problem involves probability.

Problem (2007 Euclid Contest)

In the 4 x 4 grid shown, three coins are randomly O
placed in different squares. Determine the probability
that no two coins lie in the same row or column. O

As someone once suggested to me, many probability problems are just
combinatorial (counting) problems where you divide by the size of the sample
space whenever you want to get a probability. This problem, in particular,
boils down to counting the possibilities correctly.

Before actually solving the problem, let’s consider how to count the
ways of placing the coins on the grid. For the moment, we will require only
that no two coins be placed on the same square, without worrying about
whether they are in different rows or columns. The number of ways of placing
the coins depends on whether the coins are considered to be distinguishable.
That is, can we tell them apart or are they identical?

First suppose the coins are distinguishable. We will use numbers to
refer to them. Coin 1 is the one that is placed first on the grid, followed by
coin 2, then coin 3. Coin 1 may be placed anywhere, which means there are
16 possible squares for it. For each of these placements of ©)
coin 1, there are 15 open squares remaining in which coin
2 may be placed, giving 16 - 15 ways of placing the first
two coins. For each of these ways, there are 14 squares ®
in which coin 3 may be placed, giving 16 - 15 - 14 ways of @
placing all three coins. The figure at right shows one way.

Now suppose the coins are indistinguishable. In this case, they have
no numbers. What we want to count now is the number of configurations of
the coins once they have all been placed on the grid, without regard for the
order in which they are placed. Since there are 3 coins and 16 squares, the
number of possible configurations is (*Y) = 16214 — 560. This is just our
answer for the case where the coins are distinguishable divided by 3!, the
number of ways of rearranging the coins among themselves.

Now let’s solve the problem.

Solution 1: Assume the coins are distinguishable. In how many ways can they
be placed on the grid so that no two coins are in the same row or column?

There are 16 possible squares for coin 1. Once it has ©)
been placed, there are 3 rows and 3 columns remaining
that do not contain coin 1, giving 3 - 3 = 9 squares where
coin 2 may be put (the 9 white squares in the figure at
right). Thus, there are 16 - 9 ways of placing the first two
coins in different rows and columns.
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Once the first two coins have been placed, there are ©)
2 rows and 2 columns remaining that do not contain a
coin. Thus, there are 2 - 2 = 4 squares in which coin 3
may be placed (these are the 4 white squares in the figure
at right.) Altogether, there are 16 - 9 - 4 ways of putting ©)
the three coins in different rows and columns.

Since the total number of ways of placing the three coins on the grid is
16-15-14 (as we saw earlier), the probablhty that the three coins are placed

16-9-4

in different rows and columns is 161514 = 35

We can actually compute probabilities at each stage of the calculation
instead of waiting until the end. The probability of placing the first two coins
in different rows and columns is =% = 2. Given that the first two coins are
in different rows and columns, the probability of placing the third coin in a
different row and column from each of the first two is = = 2 (since there
are 4 acceptable squares out of 14 open squares). The probablhty of placing

2

all three coins in different rows and columns is then sy = 35

Solution 2: This time, we regard the coins as 1ndlst1ngu1shable. We will find
the number of configurations for the coins in which the coins are in different
rows and columns. This could be done by using our counting method for the
case where the coins are distinguishable and then dividing by 3!, but here is
a way to count the configurations directly instead.

First, pick the 3 rows in which the coins will be put. There are (3) = 4
ways to do this. In the topmost row of these 3 rows, there are 4 possible
squares for a coin. In the middle row of these rows, there are 3 possible
squares for a coin (since it can’t be in the same column as the coin in the
topmost row). In the bottom row of these rows, there are 2 possible squares
for a coin (since it can’t be in the same column as either of the other two
coins). Thus, there are 4-4 - 3 . 2 = 96 configurations in which no two coins
are in the same row or column.

Finally, the required probability is 560 =

6
35"

This problem has an interesting history. The initial version asked the
same question for 3 coins on a 5 x 5 grid. (Can you solve this version?) During
the development of the 2007 Euclid Contest, the problem was changed to the
following problem before being changed back to its original form:

Three different numbers are chosen from the set

{11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44} .
What is the probability that no two of these numbers have the
same units digit or the same tens digit?

This problem seemed quite a lot harder than the problem with the coins,
which is strange, as it is actually the same problem! Can you see why?

You might like to try solving a more general problem where k coins are
placed on an n x n grid (with k& < n, of course).

Note. The author wishes to acknowledge the contributions of Bruce
Crofoot, Associate Editor, in the preparation of this column.
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Polya’s Paragon

Greatest Common Divisors

Ian VanderBurgh

Most of us learned about greatest common divisors (gcd’s) in elemen-
tary school when we first learned about prime numbers and prime factoriza-
tions. (Remember those prime factorization trees?) We used greatest com-
mon divisors again when we learned to add fractions. Since then, however,
we have probably forgotten most of what we learned! Here is a refresher on
ged’s along with some related calculations and manipulations.

Definition. If a and b are integers that are not both 0, the greatest common
divisor of a and b, denoted gcd(a,b), is the largest positive integer that
divides exactly into both a and b.

In other words, gcd(a, b) is the greatest of all the common divisors of
a and b. (Don't you wish that all mathematical definitions made this much
sense?) To emphasize, d is a divisor of a if d divides exactly into a (that is, if
a = qd for some integer g). To tidy up aloose end, we say that ged(0,0) = 0.
(Notice here that there is not, in fact, a largest positive integer that divides
into both 0 and 0, since every positive integer divides into 0. This means
that we either need to ignore this case entirely, or we need to say something
special here, as we have done.)

Calculations. Finding the gcd of a pair of integers is not terribly difficult when
the integers are small: ged(2, —4) = 2, gcd(3,5) = 1, and ged(—13,1) = 1.
It is worth noting that gcd(a,0) = a if a is positive and ged(a,0) = —a if
a is negative. (Those of you comfortable with absolute values can condense
this to ged(a, 0) = |a|.) Also, ged(b, 1) = 1 for every integer b. Can you see
why these formulas are true from the definition?

What happens if the integers are large? For example, suppose we want
to calculate ged(1977,2007). Your first instinct might be to try to factor 1977
and 2007 to find their positive divisors, then compare lists to find the largest
of all common divisors. Let’s try this.

First, 1977 = 3 x 659. After a bit of painful trial and error, we find
that 659 appears to be a prime number. (How do we know that 659 is prime?
That's a subject for another Paragon!) This tells us that the positive divisors
of 1977 are 1, 3, 659, and 1977.

Next, 2007 = 3 x 669 = 3 x 3 x 223. Again, after a bit of flailing
around, we discover that 223 is prime; hence, the positive divisors of 2007
are 1, 3, 9, 223, 669, and 2007.

Therefore, the positive common divisors of 1977 and 2007 are 1 and 3,
which implies that ged(1977,2007) = 3.
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This method works reasonably well, but it would be pretty gruesome
if 1977 and 2007 were each eight digits long instead of only four, or if there
were no readily apparent small prime factors. We can cut down our work a
bit by looking directly at the prime factorizations instead of listing divisors,
but this still requires calculating the prime factorizations, which, as it turns
out, is a very demanding problem computationally.

There is a better way, which takes advantage of the following fact:

Important Fact #1: If a, b, q, and r are integers with a = gqb + r,
then ged(a, b) = ged(b, r).

This fact is not all that intuitive (lots of number theory books contain a proof,
if you're interested), but we can use this fact to do what mathematicians love
to do: take a problem and turn it into a smaller (or simpler) one. Here’s how:

2007 = 1(1977) +30 —— gcd(2007,1977) = ged(1977,30)
1977 = 65(30) +27 =—=  gcd(1977,30) = gcd(30,27)
30 = 1(27)+3 —— gcd(30,27) = ged(27,3)
27 = 9(3)+0 N ged(27,3) = ged(3,0)

Following through this chain, ged(2007,1977) = ged(3, 0), which equals 3.
(We could have stopped earlier when we saw a gcd that was easy to calculate,
but it doesn’t hurt to keep going until we get a 0.) Can you tell what we did
at each step? At each step, we took out as many copies of the smaller number
as we could from the larger number, and determined what was left over. (In
technical terms, we performed the Division Algorithm several times, calcu-
lating the remainder at each stage.) Overall, this method of calculating the
ged is called the Euclidean Algorithm. Try this algorithm on 6540 and 1236.
(Did you get 12 as your answer?)

After you get comfortable with this method, you may notice two time-
saving features. The first is that you don’t have to write all of the equalities
of ged’s down the right side—these will always be true, so we can relate the
gcd of the original numbers to the gcd of the final numbers directly. The
second builds on the first—the gcd will actually always be the final non-zero
remainder in the Algorithm. (Can you see why?)

Manipulations. These methods seem to work really well for numbers, you
may say, but can I use them in a more abstract setting, like what might appear
in a contest problem?

Funny you should ask . ... Here is the very first problem from the very
first International Mathematical Olympiad in 1959:

Problem #1. Prove that the fraction 21n + 4

=" " = js irreducible for
14n + 3

every natural number n.

Step one here, as in any problem, is to figure out what it is really asking.
This problem can be restated as “Prove that gcd(21n + 4,14n + 3) = 1 for
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every natural number n” (since a fraction is irreducible if its numerator and
denominator have no common factors).
We try to model our method from above:

2ln+4 = 1(14n+3) + (Tn+ 1),
14n+3 = 2(Tn+1)+1,
™m+1 = (Tn+1)(1)40.

Thus, ged(21n+4,14n + 3) = ged(14n+3,7n+ 1) = ged("n+1,1) =1,
as we wanted. So, we can adapt this method!
Another fact that can be quite handy:

Important Fact #2: 1f gcd(c, b) = 1, then ged(ac, b) = ged(a, b).

This fact is actually useful in both directions—it allows us to convert gcd(a, b)
to ged(ac, b) (although it is not immediately obvious why we would ever
want to do this), and it allows us to convert gcd(ac, b) to ged(a, b). This fact
is more intuitive—can you explain it to yourself?

We now try a second problem:

Problem #2. Prove that ged(n?,2n + 1) = 1 for any natural
number n.

Our initial instinct is to try to use the abstract version of the Euclidean Algo-
rithm, but it is very difficult to make 2n + 1 go into n? without introducing
fractions. This is where Important Fact #2 can be used: since 2n + 1 is odd,
then ged(2n + 1,2) = 1. Thus,

ged(n?,2n+1) = gecd(2n?,2n + 1) (since ged(2n +1,2) = 1)
= gcd(—n,2n+1) (since 2n? = n(2n + 1) + (—n))
= gcd(n,2n+1) (since ged(—1,2n +1) = 1)
= gcd(n,1) (since 2n +1 = 2(n) + 1)
= 1’

as required.

I hope you have remembered a bit and learned a bit about gcd’s here.
By no means is what we have done comprehensive, but it should give you
some ideas to think about and some strategies to use. Try applying them to
one of this month’s Mayhem problems!

Ian VanderBurgh

Centre for Education in Mathematics and Computing
University of Waterloo

200 University Avenue West

Waterloo, ON, Canada N2L 3G1
iwtvande@uwaterloo.ca

NN —
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THE OLYMPIAD CORNER
No. 263

R.E. Woodrow

We begin this number of the Corner with selected problems from
the Thai Mathematical Olympiad 2003. Thanks go to Christopher Small,
Canadian Team Leader to the IMO in Athens, for collecting them for us.

THAI MATHEMATICAL OLYMPIAD 2003
Selected Problems

1. Triangle ABC has ZA = 70° and CA + AI = BC, where I is the
incentre of triangle ABC. Find /B.

2. Let f : Q — Q, where Q is the set of all rational numbers, such that

flx+y) = f(x) + f(y) + 2547
for all , y € Q and f(2004) = 2547. Find f(2547).

3. Let a, b, and c be positive real numbers such thata +b+4c¢ > % + % + %
Prove thata® + b2 +¢c2 > a4+ b+ c.

4 Let ABC be an equilateral triangle. Let A’, B’, and C’ be points on the
segments BC, CA, and AB, respectively. Suppose that |[AC’| = 2|CB’|,
|BA’| = 2|AC’|, |CB’| = 2|BA]|, and [ABC] = 126. Find the area of the
triangle enclosed by the lines AA’, BB’, and CC".

5. Find all pairs (z, y) which satisfy the system of equations
=ty — y*Y,

x’y = 1.
6. Let ABCD be a convex quadrilateral. Prove that

[ABCD] < %(AB?+ BC? + CD? + DA?).

7. Define f on the set of rational numbers in the interval [0, 1] as follows:
f(0)=0, f(1) =1, and

f(22) ifo<ao< i,
flz) = §if(2x—1) 1< <21
1 a 2 =% .

If we write x in base-2 representation as x = (0.b1b2bs...)2, find f(x) in
base-2 representation.



278

8. Find all primes p such that p? + 2543 has less than 16 distinct positive
divisors.

9. Given a right triangle ABC with /B = 90°, let P be a point on the
angle bisector of ZA inside ABC and let M be a point on the side AB
(with A # M # B). Lines AP, CP, and MP intersect BC, AB, and
AC at D, E, and N, respectively. Suppose that /M PB = /PCN and
/NPC = /MBP. Find [APC]/[ACDE].

—_— N

Next we look at two tests of the 25™ Albanian Mathematical Olympiad
for High Schools. Thanks again go to Christopher Small, Canadian Team
Leader to the IMO in Athens, for collecting them.

25" ALBANIAN MATHEMATICAL OLYMPIAD
FOR HIGH SCHOOLS
Test 1

1. There are 20 pupils in a village school. Any two of them have the same
grandfather. Show that there exists a grandfather who has at least 14 grand-
children.

2. Let M, N, and P be the respective mid-points of sides BC, CA, and AB
of triangle ABC, and let G be the intersection point of its medians. Prove

that if BN = gAB and BMGP is a cyclic polygon, then triangle ABC is
equilateral.

3. Let xzr and yi (for Kk =1, 2, ..., n) be positive real numbers that satisfy
kxryr > 1.
n €T _
(2) Prove that k2—21 w’g " zg < inynF1.

(b) When does equality hold in part (a)?
4. Find prime numbers p and q such that p2 — p + 1 = ¢3.
5. Find all pairs of positive integers (z,n) such that z"+! + 2n+1 4 1 js
divisible by ™ + 2™ + 1.
Test 2

1. Some people take part in a meeting. Every participant is acquainted with
at most three people in the group, and if two participants are not acquainted,
then they have a common acquaintance in the group.

(a) What is the maximal number of participants in this meeting?

(b) If there are three participants who are mutually acquainted with each
other, what is the maximal number of participants in this meeting?
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2. Prove the inequality

1

1 1
+ +
1/a+%+o.64 \/b+%+0.64 \/c—i—%—+—0.64

wherea > 0, b > 0, ¢ > 0, and abc = 1.

> 1.2,

3. solve the following equation in integers:
y2 = 1—+—:):+m2—|—333—|—$4.

4. prove that for any integer n > 2, the number 2™ — 1 is not divisible by n.

5. Inan acute-angled triangle ABC, let H be the orthocentre, and let d,, dp,
and d. be the distances from H to the sides BC, C A, and AB, respectively.
Prove that d, + dp + d. < 3r, where r is the radius of the incircle of triangle
ABC.

_—_—m NS —————

To continue your return to problem-solving pleasures, we give the 11th
Form of the Final Round of the 44" Ukrainian Mathematical Olympiad.
Thanks again go to Christopher Small for collecting them for our use.

44" UKRAINIAN MATHEMATICAL OLYMPIAD

11t Form, Final Round

1. (V.M. Leifura) Solve the equation
arcsin|sinxz| = arccos|cosz],
where |a] is the greatest integer not exceeding a.

2. (V.V. Lymanskiy) The acute-angled triangle ABC is given. Let O be
the centre of its circumcircle. The perpendicular bisector of the side AC
intersects the side AB and the line BC at the points P and Q, respectively.
Prove that /PQB = ZPBO.

3. (V.A. Yasinskiy) The edge SA of the tetrahedron SABC is perpendicular
to the plane ABC. Two different spheres o, and o2 contain points A, B,
and C. Both these spheres are tangent internally to a sphere o centred at S.
Let r; and r, be the radii of o, and o5, respectively. Find the radius R of o.

4 (V.A. Yasinskiy) Prove that there does not exist an integer n > 1 such
that n divides 3™ — 2™.
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5. (V.A. Yasinskiy) Given are 2004 points in the plane. They are the vertices
of a convex polygon and no four of them are cyclic. A triangle having three
of the points as its vertices is called thick if the other 2001 points lie inside
its circumcircle, and it is called thin if the other points lie outside its circum-
circle. Prove that the number of thick triangles is equal to the number of
thin triangles.

6. (0.0. Malakhov) Find the sum of the real roots of the equation

x
T+ ————— = 2004.
Va2 —1

7. (V.M. Radchenko) Does there exist a function f : R — R such that
f(@?y + f(x+ y?)) = 2* + y® + f(zy) forallz, y € R.

8. (V.A. Yasinskiy) Let a, b, and ¢ be positive real numbers such that
abc > 1. Prove that a® + b2 4+ ¢ > ab + bc + ca.

0. (V.A. Yasinskiy) A convex 2004-gon has vertices Ay, Az, ..., A2p0s4. Isit
possible to colour each of its sides and its diagonals with one of 2003 different
colours in such a way that the following two conditions hold?

(i) There are 1002 segments of each colour.

(i) If an arbitrary vertex and two arbitrary colours are given, then, starting
from this vertex and using the segments of these two colours exclusively,
one can visit every other vertex only once.

10. (1.P. Nagel) Let w be the inscribed circle of the triangle ABC. Let L,
N, and E be the points of tangency of w with the sides AB, BC, and C A,
respectively. Lines LE and BC intersect at the point H, and lines LN and
AC intersect at the point J (all the points H, J, N, E lie on the same side
of the line AB). Let O and P be the mid-points of the segments E.J and
NH, respectively. Find S(HJNE) if S(ABOP) = u? and S(COP) = v2.
(Here S(F) is the area of figure F).

—_— N r——

We turn to our files of readers’ comments and solutions to problems
given in the September 2006 number of the Corner. The first group are for
problems of the Belarus Mathematical Olympiad 2003, given in [2006 : 277].
Comment by Pierre Bornsztein, Maisons-Laffitte, France.

These six problems are from the IMO Short-list 2001.
Solutions can be found at

http://www.mathlinks.ro/Forum/viewtopic.php?t-15624

or in D Djuki¢, V. Jankovic, 1. Mati¢, N. Petrovi¢, The IMO Compendium,
Springer, p.675.
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3. Find all functions f from the real numbers to the real numbers such that,
for any real numbers x and y,

fxy)(f(x) — f(y) = (x—y)f(=)f(y) -

Solved by Michel Bataille, Rouen, France.

Clearly, the zero function is a solution.

We will show that the non-zero solutions are the functions &, x defined
by
axr ifz € K,

Tax(®) = {0 ifr¢ K,

where K is a subgroup of the multiplicative group R* = R\ {0} and a € R*.
Consider a € R* and a subgroup K of R*. We show that f = ®, i
satisfies

f(zy)(f(x) — f(y) = (z—y)f(x)f(v) 1)

forall z, y € R.

If z, y € K, then xzy € K and (1) holds since it can be rewritten as
ary(ax — ay) = (x — y)ax - ay.

If z, y ¢ K, then ®(z) = ®(y) = 0 and (1) is true.

If, say, z € K, y ¢ K, certainly zy ¢ K (otherwise y = zy - % would
be in K). Thus, ®(zy) = ®#(y) = 0 and (1) holds.

Conversely, let f be any function from R to R satisfying (1), and assume
that f is not the zero function. Then f(x¢) # 0 for some z, € R. Taking
x =1and y = 0 in (1) yields f(0) = 0 (hence, x¢ # 0). Then y = 1 gives

f(z)(f(z) —azx) = 0, 2

where we set a = f(1). This relation (2) with x = zo shows that a € R*
and, more generally, that f(z) = ax if f(x) # 0.
Now, let

K = {z eR"|f(z) =az} = {x € R| f(x) #0}.

Clearly 1 € K. If z1, z2 € K with ;1 # x5, then f(z;) = az; and
f(xz2) = ax2. Then (1) with z = =; and y = =, gives f(x1T2) = axixo;
hence, z1x2; € K. Similarly, (1) with « = z; and y = 1/z; shows that
1/xz1 € K and, lastly, (1) with z = 22 and y = 1/, gives 23 € K. We have
proved that K is a subgroup of R* and that f = ®, k. This completes the
proof.

—_— N r——
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The next block of material is for the Problems to Select Indian IMO
Team 2003 given in [2006 : 278-279].

1. Let A’, B’, C’' be the mid-points of the sides BC, CA, AB, respectively,
of an acute non-isoceles triangle ABC, and let D, E, F be the feet of the
altitudes through the vertices A, B, C on these sides, respectively. Con-
sider the arc DA’ of the nine-point circle of triangle ABC lying outside the
triangle. Let the point of trisection of this arc closer to A’ be A”. Define
analogously the points B” (on arc EB’) and C” (on arc FC’). Show that
triangle A” B”C” is equilateral.

Solved by Michel Bataille, Rouen, France; and D.]. Smeenk, Zaltbommel,
the Netherlands. First we give Bataille’s solution.

Let IV be the centre of the nine-point circle A/ of triangle ABC. The
perpendicular bisectors of B’C’ and A’D coincide (both pass through N and
are perpendicular to BC); hence, A’ and D are symmetrical in the diameter
of N perpendicular to BC. It follows that the mid-point of the (smaller)
arc B’C’ and the mid-point of the arc DA’ lying outside the triangle are
diametrically opposite.

A

F N
B D~__ \ A C
AII

Without loss of generality, we may suppose that A is the unit cir-
cle in the complex plane, with AA’B’C’ positively oriented (see figure).
We may even suppose that the angles o« = ZB’A'C’, 3 = ZC'B’A’, and
v = LA'C'B’ satisty 7 > 8 > a > v and that the complex affix of B’ is 1.
It is readily seen that the affixes of C’ and A’ are e?*® and e~ 2!7 = 2{(7—7),
respectively. The affix of the mid-point of the smaller arc B’C” is e**; hence,
the affix of the mid-point of the arc DA’ is e*("t®)  Since 7 + a < 27w — 2~
(notethat a +2v < a+ B+~ —n), we find D, A”, and A’ in that order on
the circle positively oriented. It follows that the affix of A’ is

ei(7r+a+(27r—2*y—7r—a)/3) — e47ri/3 . eZi(a—'y)/S .
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In a similar way, we find that the affix of B” is e2¥(®=7)/3 and the affix of
C" is e2™/3 . ¢2i(a—=7)/3  Thus, the affixes of B”, C”, and A” are of the
form e, e . €27i/3 and €% . ¢4™/3; whence, AA” B"”C" is equilateral.

Next we give Smeenk’s approach.

Seta = BC,b = CA, ¢ = AB, o = /CAB, 8 = /ABC, and
v = £ZBC A. Without loss of generality, we may assume that 8 > a > ~.
We first note that BA’ = 1a and BD = ccos 3. Then

DA’ = BA'—BD = la—ccosf = Rsin(8—7),

where R is the circumradius of AABC. Similarly, EB’ = Rsin(a — 7).

Let N be the centre of the nine-point circle of AABC. Then we have
/DNA’" = 2(8 — ~) and ZENB’ = 2(a — 7). In ANA’B’ we have
/A’'NB’ = 2~. Therefore,

ZA'NB" = 2v+3(B-7)+3(a—7) = 3(a+B+v) = 120°.

In the same way, ZB”"NC"” = ZC”"NA" = 120°. Thus, AA”B"C" is
equilateral.

2. Find all triples (a, b, ¢) of positive integers such that
) a<b<g
(ii) ged(a,b,c) = 1; and

(iii) a3 + b3 + 2 is divisible by each of the numbers a?b, b?c, c2a.

Solution par Pierre Bornsztein, Maisons-Laffitte, France.

Soit (a, b, ¢) un tel triplet.

On remarque d’abord que si p premier divise a et b, il divise a?b et
donc a® + b3 + 2 ainsi que a® + b3. Par suite, p divise ¢3 et donc ¢, ce qui
contredit (ii). Ainsi, ged(a,b) = 1. De méme, ged(b, ¢) = ged(c,a) = 1.

On en déduit que a?, b? et c? sont deux 4 deux premiers entre eux.
Puisqu’ils divisent chacun a® 4+ b3 + 2, cela assure que a?b?c? divise
a® 4+ b3 + 3. On a alors 3¢ > a2 + b3 + ¢ > a?b%c?, d'ol

3c > a’b?. ¢))
D’autre part, ¢? divise a® + b3, donc
< a®+b < 2. )
En combinant (1) et (2), il vient 108¢® > 4a%b® > a%c* et donc
a < c<108/ab, et enfin a” < 108. Cela entraine a = 1.

Si b = 1, alors ¢? divise a® + b3 = 2, d’oll ¢ = 1. Réciproquement, le

triplet (1,1, 1) est clairement une solution.

Sib > 1, alors ¢ > b > 1 (sans quoi, on aurait ¢ = b, en contradiction
avec ged(b, ¢) = 1). Et donc ¢® > b® + 1. 1l vient alors :

2¢® > 1434+ = a®+63+¢8 > b3%c?
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2
On vérifie alors a la main que la seule solution est b = 2 et ¢ = 3.

Finalement, les solutions sont (1,1,1) et (1, 2, 3).

d’ol ¢ > 1b?. En combinant avec (2), il vient 2% > 1b*, ou encore b < 8.

3. Find all functions f : R — R such that, for all z, y in R, we have
Flz+y) +f@)f(y) = f(z)+ fly) + f(zy) - ey

Solved by Michel Bataille, Rouen, France; and Li Zhou, Polk Community
College, Winter Haven, FL, USA. We give the write-up by Zhou, modified by
the editor.

Clearly, f =0, f = 2, and f(«) = x are solutions. We show that they
are the only solutions.

Setting z = 0 = y in (1), we get (f(O))2 = 2f(0). If £(0) = 2, then,
by letting y = 0 in (1), we see that f(x) = 2 for all z € R; that is, f = 2.

Suppose therefore that f(0) = 0. Let a = f(1). Setting x = 1 and
y=—1,wegetaf(—1) = a+ 2f(—1); thatis, f(—1) = a/(a — 2). Now
successively substituting (z — 1,1), (—x + 1,—1), and (—=z, 1) for (z, y) in
(1), we get

fl@)+(a—-2)f(x—1) = a, @
Feo) b fe ) - fe-1) = ©
f(mz+ 1)+ (a-2)f(-2) = a. (4)
Eliminating f(z — 1) and f(—=z + 1) in (2), (3), and (4) gives
f(@)—(a—-2)f(-=) = 0. ®)
Replacing = by —z in (5), we obtain
f(—z) —(a-2)f(z) = 0. (6)

If a ¢ {1, 3}, then by eliminating f(—=«) in (5) and (6), we see that
f(z) = 0forall z € R; thatis, f = 0.

If a = 3, then (2) gives f(z) = 3 — f(x — 1) for all z € R. Hence,
f(2)=3—f(1)=0and f(2) =3 — f(2) = f(3). On the other hand, by
substituting (2, 1) for (z,y) in (1), we get f(2) = f(3) + f(1) = f(3) +3,
a contradiction.

Finally, consider a = 1. Then (2) gives f(z) = f(z — 1) + 1 for all
x € R. By induction, f(x +n) = f(z) + n,forallz € Randn € Z. In
particular, f(n) = f(0 +n) = f(0) + n = n for all n € Z. Substituting n
for y in (1), we obtain nf(x) = f(nz) for all ¢ € R and n € Z. Hence, if
r=m/n € Qand x € R, then

mf(x) = f(mx) = f(n-rz) = nf(rz);
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thatis, f(rx) = rf(z). In particular, f(r) = f(r -1) = rf(1) = r. Setting
y = r in (1) gives f(x + r) = f(x) + r. Also, setting y = « in (1), we get
(f(ac))2 = f(x?). Thus, f(z) > 0if z > 0. Since f(—x) = — f(x), we have
f(z) <oifz <o.

Now, let ¢ € R be fixed. If »r € Q and r < «z, then

f@) = f@—r+71) = fl@—r)+7 > 1,

since f(x — r) > 0. It follows that f(z) > «. Similarly, f(z) < r for all
r € Q such that » > x, which implies that f(x) < z. Thus, f(z) = =.

7. Let P(x) be a polynomial with integer coefficients such that P(n) > n
for all positive integers . Suppose that for each positive integer m, there is
a term in the sequence P(1), P(P(1)), P(P(P(1))), ... which is divisible
by m. Show that P(z) = = + 1.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Li Zhou, Polk
Community College, Winter Haven, FL, USA. We give Zhou’s write-up.

We will use the notation P(®) (1) for the ith term in the sequence P(1),
P(P(1)), .... The condition P(n) > n implies that deg(P) > 1 and the
leading coefficient of P is positive.

If P(x) = x + b, then1 + b = P(1) > 1, which implies that b > 1. It
is easy to see that P(x) = x + 1 satisfies all the conditions. If b > 2, then
P(1) =1 (mod b) and, by induction, P(¥ (1) =1 (mod b) for all s > 1.

If P(x) = 2z + b, then 2 + b = P(1) > 1, which implies that b6 > 0.
If b = 0, then, by induction, P(¥ (1) = 2¢ for all 4 > 1.

We consider together all the remaining cases: (i) P(xz) = 2z + b with
b > 1; (ii) P(x) = ax + b with @ > 3; and (iii) deg(P) > 2. In these
cases, there exists N € NN such that P(n) > 2n for all n > N. Since
1< P(1) < P(P(1)) < P(P(P(1))) < ---, there exists k € IN such that
P®) (1) > N. Letr = P® (1) and m = P*+tV (1) — P*)(1). Thenr > N
andm = P(r) —r > 7. For1 < i<k, wehavel < PO(1) < r < m;
thus, m does not divide any P (1) for 1 < ¢ < k. Moreover, note that
P*t1) (1) = m 4 r = r (mod m). Assume as an induction hypothesis that
P® (1) = r (mod m) for some i > k + 1. Then

pitha) = pPP1) = P(r) = P(PP(1))
= P®tY(1) = r (mod m) .
Hence, PV (1) = r (mod m) forall i > k + 1.
8. Let ABC be a triangle, and let r, r; ,72, r3 denote its inradius and the
exradii opposite the vertices A, B, C, respectively. Suppose a > r1, b > 73,

c > rg. Prove that

(a) triangle ABC is acute, Ma+b+e>r+ry+r2+7rs.
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Solution by Vedula N. Murty, Dover, PA, USA, modified by the editor.

(a) Let s denote the semipermieter of AABC. From the known
formula tan(A/2) = r,/s and the given inequality a > r;, we obtain
tan(A/2) < a/s < 1. Similarly, tan(B/2) < 1 and tan(C/2) < 1. Then
A< 3, B<3, and C < 5 - Hence, AABC! is acute.

(b) Since the triangle ABC is acute, we have the known inequality
s > r 4+ 2R, where R is the circumradius of AABC. We also have
r1 +7r2+7r3 =r+ 4R. Hence,

r4+ri1+ro+r3 = 2r+4R < 2s = a+b+c.

0. Letnbea positive integer and {A, B, C} a partition of {1, 2, ..., 3n}
such that |A| = |B| = |C| = n. Prove that there existx € A,y € B,z € C
such that one of z, y, z is the sum of the other two.

Solution par Pierre Bornsztein, Maisons-Laffitte, France.

On dira que le triplet (a, b, c) est bonlorsquea € A, b€ B,c € C et
I'un des nombres est la somme des deux autres. Sans perte de généralité, on
peut supposer que 1 € A, et que le plus petit nombre, disons k, qui n’est
pas dans A est dans B. Supposons qu’il n’existe pas de bon triplet.

On commence par montrer que pourtoutxz € C,onaxz —1 € A. En
effet, s'il existe ¢ € C tel que x — 1 ¢ A alors, puisque (1,z — 1,x) ne
doit pas étre bon, c'est donc que x — 1 ¢ B, et ainsique z — 1 € C. En
particulier, x — 1 > k. Mais comme aucun des deux triplets (z — k, k, ) et
(k—1,x —k,z — 1) n'est bon, c’estque x — k ¢ Aetx — k ¢ B. Et donc
x — k € C. De méme, en considérant les triplets (x — k — 1,k,z — 1) et
(1, —k—1,z — k), ondéduitque x — k — 1 € C.

On peut alors recommencer ce raisonnement, et prouver par récurrence
que, pour tout z > 0, les nombres x — ik et x — ik — 1, tant qu’ils sont
strictement positifs, appartiennent tous les deux 3 C. Mais pour un ¢ bien
choisi, un de ces nombres est nécessairement inférieur ou égal a k, ce qui
implique qu’il appartienne 3 A ou a B. C’est une contradiction.

OnposeC = {ci, ..., c,}. D'aprés la propriété précédente, et puisque
|A| = |C| =mn, cestdoncque A = {c; — 1, ..., ¢, — 1}. Mais pour tout ¢,
onac; >k >1donce; —1 > 1, ce qui contredit que 1 € A.

Remarque. On peut prouver que si A, B et C forment une partition de
{1, 2, ..., n}avec |A]|, |B|, |C| > in, alors il existe un bon triplet.

Référence.
[1] G.). Székely, Contests in higher mathematics, Springer, problem C-22.

10. Letnbea positive integer greater than 1, and let p be a prime such
that n divides p — 1 and p divides n® — 1. Prove that 4p — 3 is a square.
Comment by Pierre Bornsztein, Maisons-Laffitte, France.

This problem is similar to problem #4 of the 3" Czeck-Polish-Slovak
mathematical competition. A solution appears in [2006 : 375-376].
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Next we turn to readers’ solutions to problems of the German
Mathematical Olympiad 2003 given at [2006 : 279-280].

1. Determine all pairs (z, y) of real numbers x, y which satisfy

m3+y3 = 7,
wy(@+y) = —2.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Geoffrey A. Kandall,
Hamden, CT, USA; and Edward T.H. Wang, Wilfrid Laurier University,
Waterloo, ON. We give Bornsztein’s write-up.

Assume that («, y) is such a pair. Then
(z+y)® = 2°+¢° +3zy(xz +y) = 1,

which leads to z + y = 1. Thus, zy = —2. It follows that  and y are
roots of X2 — X — 2 = 0. Therefore, (z,y) = (—1,2) or (2, —1), which are
solutions of the problem.

2. In the interior of a triangle ABC, circles
K., K,, K3, and K, of the same radii are
defined such that K;, K., and K3 touch
two sides of the triangle and K, touches
K,, K, and K3, as shown in the figure.

Prove that the centre of K, is located
on the line through the incentre and the
circumcentre.

Solved by Michel Bataille, Rouen, France; and D.]. Smeenk, Zaltbommel,
the Netherlands. We give Bataille’s solution.

Let O; be the centre of the circle K; (for : = 1, 2, 3, 4), and let p be
the common radius of the circles. Let « (centre I, radius ) and I (centre O,
radius R) denote the incircle and the circumcircle of AABC, respectively.
Circle K is the image of v under the homothety with centre A and scale
—_— — —_— —
factor k = p/r; hence, AO; = kAI, so that I0; = (1 — k)I A. Similarly,
— — — — . .
IO; = (1—k)IB and I03 = (1 —k)IC. Therefore, AO;10205 is the image
of AABC under the homothety with centre I and factor 1 — k. It follows
that the circumcentre of AO;0203, namely Oy, is the image of O through
this homothety. As a result, O4, I, and O are collinear, as required.

Note. The circumradius 2p of AO;0,03 satisfies 2p = ( — g) R.
rR

, a useful result when drawing the figure.
2r+ R

Thus, p =
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3. The caterpillar Nummersatt is sitting in the middle square of an N x N
board, where IN is an odd integer with N > 3. The other squares of the
board each contain a positive integer, and all of these integers are different.
Nummersatt wants to find a way off the board. The caterpillar can move only
between adjacent squares (squares having a common side), or off the board
from one of the outermost squares, having once reached such a square. On
reaching a new square, Nummersatt has to eat the number on that square.
The number n weighs % kg, and Nummersatt cannot eat more than 2 kg.

Decide whether numbers can be distributed on the board so that there
is no way off the board for Nummersatt

(a) for N = 2003, (b) for all odd integers N > 3.

Solved by Pierre Bornsztein, Maisons-Laffitte, France.

Nous allons prouver que, dans le cas général, Nummersatt peut tou-
jours sortir du tableau sans manger plus de 0, 9 kg. Pour cela, on va utiliser
la méthode probabiliste.

Tout d’abord, on remarque que, quitte a2 augmenter le poid avalé, on
peut supposer que les entiers utilisés sont 1, 2, ..., N2.

On identifie chaque case avec son centre de sorte que, si N = 2k + 1,
chaque case est un point du réseau des points entiers a coordonnées dans
I={—k,—k+1,...,k—1, k}. Le carré central est (0,0).

On va considérer les chemins partant de (0,0) et sortant du réseau
en ne passant que d’'un point (x,y) 3 un point voisin (z’,y’) tel que
|2’] + |y’| > |=| + |y| (par exemple, si z, y > 0 cela n'autorise qu'un
déplacement vers (x + 1, y) ou vers (x, y + 1)). En particulier, un tel chemin
meéne nécessairement vers la sortie en un nombre fini d’étapes et sans boucle.
Le long d’'un tel chemin, Nummersatt se déplace en respectant les conditions
de I’énoncé, celle indiquée ci-dessus et les contraintes probabilistes suivantes
(il est vivement conseillé de faire un dessin) :

e De (0,0), il choisit un des points (—1,0), (1,0), (0,1), and (0, —1)

de facon équiprobable.

e S'il est en (n,0), avecn > 1, il vaen (n,1) ou en (n, —1) avec une

probabilité de ﬁ dans chacun des cas, et va en (n + 1,0) avec
une probabilité de - :L_ T
e S'ilesten (n—p,p),avecn > p > 1,ilvaen (n—p+1,p) avec une
probabilité de % eten (n — p,p+ 1) avec une probabilité
de 2P+1
2(n +1)

e S'il esten (0,n), avecn > 1, il vaen (1,n) ou en (—1,n) avec une

probabilité de dans chacun des cas, et va en (0, + 1) avec

1
2(n+1)
une probabilité de — >

n
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Les autres cas se traitent de facon symétrique (par rapport a I'un des axes
de coordonnées ou par rapport 3 (0,0)) par rapport a la situation qui vient
d’étre décrite pour les points (z,y) avec =, y > 0. Il est alors facile de
vérifier que si 'on note p(x, y) 1a probabilité que Nummersatt passe par le

point (z,y) # (0,0), alors p(x,y) = RS

Soit X la variable aléatoire égale au poid total mangé par Nummersatt
au cours de son périple. On note E(X) son espérance mathématique.

Pour (z,y) # (0,0), on note w(x,y) le poids attribué au point (z, y)
(si le nombre accroché a (x,y) est n, on a donc w(z,y) = 1/n. De plus,
on convient, pour simplifier les sommations qui suivent, que w(z,y) = 0
lorsque (z, y) ne fait pas partie du réseau fini considéré). On note que pour
un point (x,y) du réseau considéré, on a |z| + |y| < 2k.

Alors :
E(X) = > p@yw(y)
(m,y);é(0,0)
2k 2k 1
= > | X p@yu@y| =3 |~ > w@y)
n=1 | |z|+|y|=n n=1 2| +|y|=n
< 1+1+1+1>+1<1+1+ +1>
- 4 2 3 4 8\5 6 12
o (1 4+t 1)+
12 \ 13 24
_ 1(1+1+1+1>+1<1+1+ +1>+R
4 2 3 4 8\5 6 12 '

1 1,01, 1y, 1(1 1 1) _ 143771
Onaz(1+3+3+3) +5(E+s+ - +13) = 331760 < 0,65et

2k [ 4n 1 2%k 4 an
R < Z [522712—277,] - Z(E) <2n2—2n>

n=3 =1 n=3

2k 1 1 2k 1 1 1/1 1 1
DI N e e C S

= 2n(n —1) 24 \n—-1 n 2\2 2k 4

Ainsi E(X) < 0,9.
On en déduit que, parmi les chemins considérés, il en existe un pour
lequel le poids total mangé par Nummersatt ne dépasse pas 0, 9 kg.
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4 et A:, B4, and C; be the mid-
points of the sides of the acute-angled
triangle ABC. The 6 lines through
these points perpendicular to the other
sides meet in the points A5, B2, and Cs,
as shown in the figure. Prove that the
area of the hexagon A,CyB,A>C.1B;
equals half of the area of AABC.

A C: B

Solved by Michel Bataille, Rouen, France; Geoffrey A. Kandall, Hamden, CT,
USA; and D.]. Smeenk, Zaltbommel, the Netherlands. We give Bataille’s
write-up.

Denote the area of AXY Z by [ XY Z]. Since A A; B;C is the image of
A ABC under the homothety with centre at the centroid and factor —%, we
have [A1B1C4] = i[ABC]. Similarly, using the homothety h with centre A
and factor 1, we have [AB,C4] = 1[ABC].

Now, let O and H be the circumcentre and orthocentre of AABC,
respectively. Note that these points are interior to the acute-angled AABC.
Letting h, be the length of the altitude from A to BC in AABC, we have

[BHC] = ;-BC - (ha— AH) = [ABC]— ;BC - AH .
Using the well-known relation AH = 20 A,, we deduce that
[BHC] = [ABC]— BC-0A; = [ABC] — 2[0BC].

Observing that h(H) = A, (Where h is the homothety defined above), we
obtain

[B1A2C1] = :[BHC] = %[ABC]— i[OBC].

In the same way, we can show that [C;B;A,] = 1[ABC] — 1{[OCA] and
[A1C2B4] = $[ABC] — 1[OAB]. It follows that

[A1C2B1A2C1B2] = [A1B1C41] 4 [B1A2C1] 4 [C1B2A;] + [A1C2B4]
= 1[ABC]+ 3[ABC]
— 1([0BC] + [OCA] + [OAB])
= [ABC] - i[ABC] = 1|ABC],

as required.

5. If n is a positive integer, let a(n) be the smallest positive number for
which (a(n))! is divisible by n. Determine all positive integers n satisfying

a() _ 2

n 3



291

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; and Edward T.H. Wang, Wilfrid Laurier University, Water-
loo, ON. We give Wang’s write-up.

The only solution is n = 9. Note first that the given condition is simply
3a(n) = 2n, which implies 3 | n. Setting n = 3k, we have a(3k) = 2k.
Clearly, k¥ # 1 since a(3) = 3. For k > 2, we have 3k | (2k)!, since
(2k)! = (2k)---2 -1 contains the separate factors k£ and 3 even if & = 3.
However, if K > 3, then (2k —1)! = (2k—1).--k-.-2-1 also contains the
distinct factors k and 3, and hence, a(3k) < 2k. Finally, for £ = 3, we have
a(9) = 6, since 9 | 6! but 9 1 5!. Thus, n = 9 is the only solution.

6. Prove that there are infinitely many pairs (a, b) of positive integers with
a > b having the following properties:

(i) the greatest common divisor of a and b equals 1;
(ii) a is a divisor of b% — 5.

(iii) b is a divisor of a? — 5.

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s write-up.

Let (a, b) be a pair of positive integers with a > b. We first show that
(a, b) satisfies (i), (ii), and (iii) if and only if a® 4 b* — 5 is a multiple of ab.

Suppose that (i), (ii), and (iii) hold. Then b> — 5 = Aa and a® — 5 = ub
for some integers A and pu. Hence, ab? — 5a = Aa? = 5\ + Aub. Thus,
b(ab—Ap) = 5(A+a). 1f 5 divides b, then, since a? = 5+ ub, it follows that 5
divides a, contradicting (i). Therefore, 5 divides ab—Au. Then ab—Ap = 5k
for some integer k, and we have b(5k) = 5(\+a); thatis, A = bk —a. Then
b2 — 5 = (bk — a)a; that is, a® + b%> — 5 = kab.

Conversely, suppose that (a, b) satisfies a? + b%> — 5 = kab for some
integer k. Conditions (ii) and (iii) clearly hold. If d = gcd(a, b), then a = da’
and b = db’ and so d?a’? + d?b’? — 5 = kd?a’t’. It follows that d? divides
5 and d must be 1, implying that condition (i) holds as well.

Now, suppose that (a, b) satisfies a? 4+ b> — 5 = kab for some integer
k > 1. From (ak — b)2 + a® — 5 = ka(ak — b), we see that (ak — b, a) is
another pair satisfying the conditions. Starting with the pair (4, 1) (for which
k = 3), and applying repeatedly the transformation (a,b) — (ak — b, a), we
obtain a sequence of distinct pairs that are solutions. Specifically, let a; = 4,
b1 =1and ap41 = 3a, — by, bpt1 = a,, forall n € N, then a,, < ap41 for
all n and (a,, b,) satisfies all the conditions. Besides, it is easily seen that
an = Lapy1 and b,, = Lo, Where {L,,} is the Lucas sequence defined by
Lo = 2, Li=1 and Ln+1 =L,+L,_1 for n € N.

—_— N r————

That completes this number of the Corner. Please send your nice so-
lutions and generalizations promptly since I start using your material about
eight months after the problem sets appear in the Corner.
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BOOK REVIEW

John Grant McLoughlin

King of Infinite Space—Donald Coxeter, the Man Who Saved Geometry
By Siobhan Roberts, House of Anansi Press, Toronto, 2006

ISBN 0-88784-201-1, hardcover, 480 pages, CDN$36.95.

Reviewed by Andy Liu, University of Alberta, Edmonton, AB

This book is more than just a biography of the late Professor Coxeter.
It is a veritable encyclopedia of geometry for the layman. 1 must state imme-
diately and emphatically that the phrase “for the layman” is not intended to
be derogatory, but high praise. Although I, as a professional mathematician,
learned a lot by reading this book, the mathematical details are so well
handled (sometimes in the Appendices) that I think the book could be read,
absorbingly, by the general public. T welcome this book whole-heartedly
as a fine, and all-too-rare, example of how to communicate mathematics
effectively.

The subtitle of the book, “the Man Who Saved Geometry”, is rather
bewildering to many people, as illustrated by an amusing incident related
by the author in the Acknowledgement. The author sets the scene in the
Introduction with a painstaking description of the decline of geometry in the
20th century. The battle cry, “Down with Euclid! Death to Triangles”, had
been sounded loud and clear by the Bourbakists, a most influential group
of French mathematicians. One of them, Jean Dieudonnég, is cast in the
role of Professor Coxeter’s antagonist—though I must hastily add that he is
treated with all due respect, representing a different set of values with its own
justifications.

Professor Coxeter’s field of research was definitely unfashionable and
set him back in worldly advancements at first. However, he was determined
to hold his course (a recurrent theme of the book). In one of the Appen-
dices, the author quotes extensively from a paper by the renowned physicist,
Freeman Dyson of Princeton’s Institute of Advanced Studies, on “Unfash-
ionable Pursuits”. Dyson once sent a copy to Professor Coxeter, who most
certainly appreciated it very much.

The first chapter deals with the last conference Professor Coxeter
attended, in Budapest, Hungary. He was accompanied at the conference
by family and colleagues, and by the author, who must have been in the
process of getting to know the great man. Many first-hand experiences are
recorded, with colourful details. Professor Coxeter must have reflected on
his illustrious career and discussed with the author his love of geometry. We
learn about the accomplishments of the icons of ancient Greece—Pythagoras,
Plato, and Euclid—as well as the lives of Hungarian giants of the more recent
past, Janos Bolyai and Paul Erdés.
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The remaining seven chapters of Part I relate events in Professor
Coxeter’s life in chronological order, starting with his childhood in England.
For me, the highlight was his adoption of Canada as his home in 1936 shortly
after his marriage. Professor Coxeter lived enough of his long life in this
country that Canadians can claim him as a national hero.

The list of people who came into contact with Professor Coxeter and had
an influence on him reads like a “Who’s Who” in mathematics. At Cambridge,
he was rubbing shoulders with J.E. Littlewood, H.F. Baker and G.H. Hardy.
In 1932, he went to Princeton as a Rockefeller Fellow. There he studied
under Solomon Lefschetz, Oswald Veblen, John von Neumann, Paul Wigner,
and George Polya. The next year, he returned with another fellowship and
was in contact with Albert Einstein and Emmy Noether, and worked closely
with Herman Weyl.

I mention all this to give the reader an idea of the richness between
the covers of this book. There is a lot more in Part I, and Part II is another
treasure trove. The last Appendix is a list of the publications of Professor
Coxeter. There are also an amazing 74 pages of Endnotes, detailing the
meticulous research which went into this book. Although the author must
have been in Professor Coxeter’s hair for a considerable period, she is
conspicuously absent from her own book.

Having said that, let me indulge in a bit of self-reference of my own.
My only meeting with Professor Coxeter was at the International Congress
of Mathematics Education in Quebec City in August, 1992. During a lunch
cruise on the St. Lawrence River, I sat at the same table as Professor Coxeter
and his wife. During the meal, a violinist came and played romantic music.
It was the Coxeters’ fifty-sixth wedding anniversary! 1 was playing with a
geometric puzzle. Professor Coxeter found it intriguing too, and I was pleased
to present him with an impromptu anniversary present.

I also met the author, Siobhan Roberts, once, in connection with an-
other of her literary projects. Having had some first-hand knowledge of her
work and a little glimpse of how she works, I have awaited the arrival of my
review copy with great excitement, and it has exceeded all my expectations.
In the Acknowledgement, she lets slip that she is very good in mathematics
too, but that alone cannot explain this wonderful piece of work. T will most
certainly buy any of her books, on any subject.

The author remarks that the Hungarian mathematician Janos Bolyai, at
the time of his death, in 1860, had received no recognition for his discovery
of non-Euclidean geometry. I am happy to say that we have made sufficient
progress to have Professor Coxeter take his rightful place in the history of
mathematics in his own lifetime.

NN —
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On a Theorem of Erdés Concerning
Additive Functions

José Luis Ansorena and Juan Luis Varona

Abstract

Erdés proved that every increasing additive function must be a con-
stant multiple of the logarithmic function. We prove a weaker result that
assumes that the function is completely additive. In particular, what this
paper does show is how wide the gulf is between additive and completely
additive functions: proving the result for completely additive functions
is very easy, but Erdés’s proof for merely additive functions required a
formidable effort.

2000 Mathematics Subject Classification. Primary 11A25.
Key words: Additive functions, completely additive functions, Erdés.

An additive function is defined as a real-valued arithmetic function
f : N — R such that f(nm) = f(n) + f(m) for all pairs of coprime
integers n and m. If f(nm) = f(n) 4+ f(m) for all n, m € W, then we
say that f is a completely additive function.

In [1, Theorem XI, p. 17], Erdds states that if f is an additive function
such that f(n+1) > f(n) for all n € I, then f(n) = Clogn for a constant
C € R. Without the hypothesis f(n + 1) > f(n), this is not true in general,
as is shown, for instance, by the completely additive function Q(n) defined
by Q(pi*p3*---pp*) = a1 + a2 + - -+ + ax, where n = p7*p3? - - - pi* is the
prime decomposition of n. Erdés’ Theorem is a deep and interesting result,
but its proof is rather complicated; see [3, p. 133] and [2, §8.33 and 8.34,
p. 265 and ff.] for adequate comments and additional references, including a
proof (due to Moser and Lambek) that simplifies the original proof of Erdés.

In this note, we pose a weaker result, but with a very elementary proof.
Also, we show a nice consequence.

Theorem 1. Let f be a completely additive function such that f(n+1) > f(n)
for all n € IN. Then, there is a real constant C > 0 such that f(n) = Clogn
for all n € IN.

Proof: We claim that, if f and g are two functions satisfying the conditions,
they must satisfy

f(n)g(2) = f(2)g(n) Vn eN. @

In particular, this would be true for g(n) = logn. Then, our claim implies
that f(n) = Clogn with C = f(2)/log2 and so the theorem is proved.
Thus, we only need check (1).

Copyright © 2007 Canadian Mathematical Society
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Letn € Nand k£ € IN. Let us take I € N such that 21 < nk < 2%
Then (I — 1)f(2) < kf(n) < lf(2). The same inequality is true for the
function g; we can write it as —lg(2) < —kg(n) < —(1—1)g(2). Multiplying
the first expression by g(2), the second by f(2), adding them, and dividing
by k, we get

—372)9(2) < f()g(2) - f@)g(n) < 1 F(2)9(2).

Since this happens for every £ € IN, equation (1) follows and the proof is
complete. [ ]

As a consequence, let us establish the following result:

Theorem 2. Let f : N — IN U {0} be an increasing and completely additive
function. Then, f is the zero function.

Proof: Let us suppose that f is not the zero function. By Theorem 1,
there is a real constant C > 0 such that f(n) = Clogn for all n € NN.
If f takes only integer values, then f(n)/f(m) = (logn)/(logm) for all
integers n, m > 2. Therefore, (logn)/(logm) = a/b with a, b € IN. This
implies that n® = m?®. But this is impossible if n and m have no common
prime factor. [ ]

Remark. By using Erd6s’s Theorem, we see that the same proof serves to
establish the corresponding result for additive functions.

For completeness, let us show that, without using Theorem 1, another
proof of Theorem 2 can be given. Let us begin with

Lemma. Let f be an increasing and completely additive function. Then,
f(1) = 0. Moreover, if f is not the zero function, it satisfies f(n) > 0 for
all n > 1, and £ is strictly increasing.

Proof: We have f(n) = f(1-n) = f(1) + f(n), and thus f(1) = 0. If fis
not the zero function, there exists a € IN such that f(a) # 0. Since a > 1,
it follows that f(a) > f(1) = 0; hence, f(a) > 0. Now, given n > 1, there
exists k such that n* > a; then kf(n) = f(n*) > f(a) > 0, and we have
f(n) > 0.

Finally, let us suppose that f(n) = f(m) with n < m. This is not
possible if n = 1, because f(1) = 0 and f(m) > 0; thus, we may assume
that 1 < n < m. Let us take k large enough such that n*+! < mk (it suffices
to take k > (logn)/(logm — logn)). Then

f(n*) = kf(n) = kf(m) = f(m*).

Consequently, f(r) = f(n®) = f(m?*) for every r such that n* < r < m*.
In particular, f(nk¥*t') = f(n*), and so (k + 1)f(n) = kf(n), which is
impossible, because f(n) > 0. |

Using this lemma, we get the following.
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Second proof of Theorem 2: For every n € IN, there exists an integer k such
that 2k+1 — 2k = 2k > p. Let us take n intermediate numbers r; between
2k and 2*¥+1; that is,

28k < pl <y < e <y, < 2R

Now, let us suppose that f is not the zero function. By the lemma, f is
strictly increasing which implies that

kf(2) = Ff(2%) < f(r1) < f(r2) < --- < f(ra) < f(2F)
(k+1)f(2) = kf(2)+ f(2).

Then, by the pigeonhole principle, we have f(2) > n. But this happens for
every n € IN, which is absurd. [
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PROBLEMS

Solutions to problems in this issue should arrive no later than 1 March 2008.
An asterisk (x) after a number indicates that a problem was proposed without a
solution.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English. In the solutions’ section, the problem will be stated in
the language of the primary featured solution.

The editor thanks Jean-Marc Terrier of the University of Montreal for transla-
tions of the problems.

We inadvertently credited Panos E. Tsaoussoglou, Athens, Greece as
the proposer of 3225 [2007 : 112, 115]. The actual proposer was George
Tsapakidis, Agrinio, Greece. We apologize to both parties for this error.

—_—_—— S ———

3221. correction. Proposed by Juan-Bosco Romero Marquez, Universi-
dad de Valladolid, Valladolid, Spain.

Let ABC be a triangle with sides a > b > c opposite the angles A, B,
C, respectively. Let AH be perpendicular to the side BC with H on BC.
Set m = BH and n = CH. Prove that a(bm + ¢n) — be(b + ¢) is positive,
negative, or zero according as Z A is obtuse, acute, or right-angled.

3251. Proposed by Michel Bataille, Rouen, France.

Let uy, uo, and us be any real numbers. Prove that

[cos? (u; — wit1) + cos®(u; + wit1)]
1

S| =

3
1=
> (coswuj cosuy cosug)? + (sinu; sin uy sinug)?,

where the subscripts in the summation are taken modulo 3.

3252. Proposed by Michel Bataille, Rouen, France.

Let S be a set of complex 2 x 2 matrices such that, forall A, B, C € S,
we have ABCAB = C.

(a) Show that (ABC)™ = A™B™C™ for all positive integers n and all
matrices A, B, C € S.

(b) Give an example of such a set S containing at least three matrices with
two of them non-commuting.

3253. Proposed by Mihaly Bencze, Brasov, Romania.
Prove that

log, (e™ — 1) log,(e™ 4+ 1) + log, (7¢ — 1) log,. (7¢ + 1) < e* + n2.
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3254, Proposed by G. Tsintsifas, Thessaloniki, Greece.

Let C be a convex figure in the plane. A diametrical chord AB of C
parallel to the direction vector @ is a chord of C of maximal length parallel
to the direction vector v .

Prove that if every diametrical chord of C bisects the area enclosed by C,
then C must be centro-symmetric.

3255. Proposed by G. Tsintsifas, Thessaloniki, Greece.

Prove that, as the points A, B, C move over the surface of an ellipsoid
centred at O while the lines OA, OB, OC stay mutually perpendicular, the
plane ABC remains tangent to a fixed sphere.

3256. Proposed by Viclav Koneény, Big Rapids, M1, USA.

A bicentric quadrilateral (also called a chord-tangent quadrilateral) is a
quadrilateral that is simultaneously inscribed in one circle and circumscribed
about another.

Let ABCD be a bicentric quadrilateral in which there are no parallel
sides. Suppose that the circumscribed and inscribed circles of ABC D have
centres O and I, respectively. Let AC meet BD at E. ]Join the points of
tangency on the opposite sides of the quadrilateral, thus obtaining two lines
which intersect at a point T'.

Prove that O, E, T, and I are collinear. When do the points E and T
coincide? (Compare 2978 [2004 : 429, 432; 2005 : 470-472].)

3257. Proposed by Bill Sands, University of Calgary, Calgary, AB.

Find the number of ordered pairs (A, B) of subsets of {1, 2, ..., 13}
such that |A U B is even.

3258%. Proposed by Alper Cay, Uzman Private School, Kayseri, Turkey.

Let ABC be a triangle with ZABC 80°. Let BD be the angle
bisector of ZABC with D on AC. If AD DB + BC, determine ZA,
using a purely geometric argument.

3259. Proposed by Neven Juri€, Zagreb, Croatia.

Is it possible to find a cubic polynomial P such that, for any positive
integer n, the polynomial P o P o --- o P has exactly 3™ distinct real roots?
| —————

n times
Find one, if possible, or show that none exists.

3260. Proposed by Virgil Nicula, Bucharest, Romania.

Let a, b be distinct positive real numbers such that (a —1)(b—1) > 0.
Prove that

a® +b* > 14+ab+ (1 —a)(1 —b) - min{l, ab}.
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3261. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, MI, USA.

The Fibonacci numbers F,, and Lucas numbers L,, are defined by the
following recurrences:

o, =0, F; = 1, and Fn+1 = F,+ F,_1, fOI"fLZl;
Lo =2, L =1, and Ln+1 = L,+ L,_1, fOI'nZ]_.

Prove that

L )arctan 1
i Lo, Lopy2
1
=1
n arctan <F )

2n+1

4 1
< p arctan(3) (arctan(,@) + §) )

3262. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, M1, USA.

Let m be an integer, m > 2, and let a4, a3, ..., a,, be positive real
numbers. Evaluate the limit

1 /e 5
L, = lim — H 1n(1—|—akw") dx .

n—oo M 1 1

3221. correction. Proposé par Juan-Bosco Romero Marquez, Université
de Valladolid, Valladolid, Espagne.

Soit ABC un triangle de c6tés a > b > c opposés respectivement aux
angles A, B et C. Soit AH la perpendiculaire au c6té BC avec H sur BC.
Posons m = BH et n = CH. Montrer que a(bm + c¢n) — be(b 4 ¢) est
positif, négatif ou nul, suivant que I’angle A est obtus, aigu ou droit.

3251. Proposé par Michel Bataille, Rouen, France.

Soit uq, uo et ug trois nombres réels arbitraires. Montrer que

=

[cos? (u; — wit1) + cos®(u; + uit1)]

6'1

3
i=

> (coswuj cosugy cosug)? + (sinu; sin uy sin ug)?,

ou, dans la sommation, les indices sont calculés modulo 3.
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3252. Proposé par Michel Bataille, Rouen, France.
Soit S un ensemble de matrices 2 x 2 complexes telles que pour tout
A, BetC € §,onait ABCAB =C.

(a) Montrer que (ABC)™ = A™B™C™ pour tous les entiers positifs n et
toutes les matrices A, BetC € S.

(b) Donner un exemple d’'un tel ensemble S contenant au moins trois
matrices avec deux d’entre elles ne commutant pas.
3253. Proposé par Mihaly Bencze, Brasov, Roumanie.

Montrer que

log, (e™ — 1) log (e™ 4+ 1) + log, (7€ — 1) log, (7¢ + 1) < e* + n2.

3254. Proposé par George Tsintsifas, Thessalonique, Gréce.

Soit C une figure plane convexe. Une corde diamétrale AB de
paralléle au vecteur non nul @ est une corde de C paralléle au vecteur
et de longueur maximale.

Montrer que si toute corde diamétrale de C sépare la portion bornée par
C en deux parties d’aire égale, alors C doit posséder un centre de symétrie.

C
—
v

3255. Proposé par George Tsintsifas, Thessalonique, Gréce.

Montrer que siles points A, B et C se déplacent au-dessus de la surface
d’une ellipsoide centrée en O et que les droites OA, OB et OC restent mu-
tuellement perpendiculaires, alors le plan ABC reste tangent 3 une sphére
fixe.

3256. Proposé par Viclav Koneény, Big Rapids, M1, USA.

Un quadrilatére bicentrique est un quadrilatére qui posséde a la fois un
cercle incrit et un cercle circonscrit .

Soit ABCD un quadrilatére bicentrique sans cétés paralléles. Soit
respectivement I et O les centres des cercles incrit et circonscrit. Soit FE le
point d’intersection de AC et BD. Si on relie par des droites les points de
tangence des cotés opposés du quadrilatére, elles se coupent en un point 7.

Montrer que O, E, T et I sont colinéaires. Quand les points E et T
coincident-ils ? (Comparer avec 2978 [2004 : 429, 432; 2005 : 470-472].)

3257. Proposé par Bill Sands, Université de Calgary, Calgary, AB.
Trouver le nombre de paires ordonnées (A, B) de sous-ensembles de

{1, 2, ..., 13} telles que |A U B soit pair.

3258%. Proposé par Alper Cay, Uzman Private School, Kayseri, Turkey.

Soit ABC un triangle dont ’angle ABC vaut 80°. Soit BD la bissec-
trice de I'angle ABC, avec D sur AC. Si AD = DB + BC, trouver I'angle
A en utilisant un argument purement géométrique.



301

3259. Proposé par Neven Juri¢, Zagreb, Croatie.

Est-il possible de trouver un polynéme cubique P tel que, pour tout
entier positif n, le polynéme P o P o --- o P posséde exactement 3™ racines
—_—

n fois
réelles distinctes? En trouver une, si possible, ou montrer qu’il n’en existe

aucune.

3260. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit a et b deux nombres réels positifs distincts et tels que
(a —1)(b — 1) > 0. Montrer que

a® +b* > 14+ab+ (1 —a)(1 —b) - min{l, ab}.

3261. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, MI, E-U.

Les nombres de Fibonacci F,, et les nombres de Lucas L,, sont définis
par les récurrences :

Fp =0, Fy =1, et F,4, = F,+F,_,, pourn>1;
Ly =2, Ly =1, e L,y = L,+L,_;, pourn > 1.

Montrer que

1

2n+2

> < 4 arctan(3) (arctan(,@) + %) ,

ou 8= 1(v5—1).

3262. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, M1, E-U.

Soit m un entier, m > 2, et soit a4, a3, ..., a,, des nombres réels
positifs. Calculer la limite

1 e ™
L,, = lim — H ln(l + akw") dz .

n—oo nMmM 1 1

——— | NS
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

—_—— S ———

3102. [2006 : 44, 47] Proposed by D.]. Smeenk, Zaltbommel, the
Netherlands.

Let D be the mid-point of the side BC of AABC'. Let E and F be the
projections of B onto AC and C onto AB, respectively. Let P be the point

of intersection of AD and EF. Show that, if AD = ? BC, then P is the
mid-point of AD.

I11. Solution by Nobutaka Shigeki, Kitakyusyu City, Fukuoka, Japan, modi-
fied by the editor.

First we will establish a lemma.

Lemma. Let PS and PT be the tangents S M X
to a circle at S and T from an exterior
point P, as shown is the figure. Let X and " Z
Y lie on the circle and be collinear with P. P
If Z is the point of intersection of ST and F o
XY, then
1 1 2 T
PX  PY ~ PZ’ M

Proof: Let M be the mid-point of XY, let O be the centre of the circle, and
let F be the intersection of PO with ST. Then
1 1 _ PX+PY  2PM
PX PY  PX.-PY  PX.PY'
2PM 2 .
PX.PY — pz hatis

PM.PZ = PX.PY. (2)

Therefore, equation (1) is equivalent to

Clearly, the points Z, F, O, and M are concyclic. Thus,
PM -PZ = PF-PO = PS?,

because APSF is similar to APOS. Since PS? = PX - PY, we have (2)
and thus (1). [

Now we turn our attention to the given problem. Clearly, E and F are
the intersections of the circle having BC as diameter with the lines AC and
AB, respectively. It follows that ZABC = 180° — /FEC = ZAEF. On
the other hand, since ABDF is isosceles, we have ZABC = /BFD. Thus,
LAEF = /BFD. Similarly, /AFE = /DEC.
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Let T' be the circumcircle of
ANAEF. By the Tangent-Chord The-
orem, we see that DF is tangent to T
at F and that DFE is tangent to I at
E. Let A’ be the second point of in-
tersection of DA with T'. Applying the
above lemma to T, we obtain

2 1 1
P — paTpa O
Llet r = DB = DFE = DF.
Then DA’ - DA = r2. Since we are

given that AD = +/3r, we deduce that
DA’ = r/+/3. From (3), we have

2 _ V3 1
DP ~ r V3r |
Therefore, DP = (v/3/2)r = ; DA, which means that P is the mid-point
of AD.

[ Ed.: By refining the argument at the end of the proof, one can show
that AD = \/TgBC if and only if P is the mid-point of AD.

The above proof assumes that AABC is acute-angled. However, if
there is an obtuse angle at B or at C, the result is still valid. The above
proof extends to this case by simply modifying the argument used to show
that DE and DF are tangent to I'.]

NN —

3137. [2006 : 173, 176] Proposed by Tina Balfour and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON.

Find all solutions in non-negative integers to the following Diophantine
equations:

(@) 5™+ 3™ =2F; (b) % 5™ + 3™ =2k,

(a) Composite of similar solutions by Brian D. Beasley, Presbyterian College,
Clinton, SC, USA; and David E. Manes, SUNY at Oneonta, Oneonta, NY,
USA.

Note first that there are no solutions when k& = 0. It is also clear that
(m,k) = (0,1) and (1, 3) are solutions. We now show that there are no
other solutions.

Suppose m > 2. Then k > 6. Since 2 = 0 (mod 16) for k& > 4, we
have 5™ + 3™ = 0 (mod 16).

However, the least non-negative residues of 5™ modulo 16 for m > 1
are 5, 9, 13, and 1, which repeat in cycles of length 4, while those of 3™
are 3, 9, 11, and 1, which also repeat in cycles of length 4. Consequently,
5™ 4+ 3™ = 8 (mod 16) or 5™ 4+ 3™ = 2 (mod 16), and our claim follows.
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(b) Solution by Mercedes Sanchez Benito, Universidad Complutense, Madrid,
Spain, Oscar Ciaurri Ramirez, Universidad de La Rioja, Logrofio, Spain, and
Manuel Benito Mufioz and Emilio Fernandez Moral, 1ES Sagasta, Logrofio,
Spain, modified by the editor.

If n is even, we have 5™ 4+ 3™ = 1™ + (—1)" = 2 (mod 4). Since
2k = 2 (mod 4) if and only if K = 1, the unique solution for n even is
m=n=0and k = 1.

Let n be odd. For m = 0, we have to find solutions to 1 + 3™ = 2.
However, Leo Hebreus (or Levi ben Gerson, 14t™ century) proved that for all
n > 2, the integer 3™ & 1 has an odd divisor; hence, the unique solution of
1+3"=2Fform=0andnoddisn=1and k = 2.

Now we assume that m > 0. By considering the equation modulo 3,
we obtain (—1)™ = (—1)* (mod 3), which implies that m and k have the
same parity. On the other hand, by examining the equation modulo 5, we
get

2k = (=2)" = —2" = +2 (mod 5) ,

since n is odd. This implies that k is odd (and then so is m).

Now suppose that m > 3 and n > 3 (which means that & > 7). Setting
A = 22276800 = 26.32.52.7.13.17, we checked by a computer program
that there are no solutions of 5™ + 3™ = 2* modulo A for odd exponents
m >3, n > 3, and k > 7 (the checking is a “finite” problem, since 5%! = 53
(mod A), 3243 = 3% (mod A), and 227 = 27 (mod A)). Therefore, we
must have either m = 1 orn = 1.

Letn = 1. We must look for solutions of 5™ 43 = 2% (this problem was
proposed on the XXII Spanish Mathematical Olympiad). Using the modulus
B = 65792 = 28 . 257, we again used a computer to search for solutions
modulo B (again the checking is a “finite” problem, since 52°¢ = 1 (mod B)
and 225 = 2° (mod B); furthermore, 9 is the smallest power of 2 where the
remainders modulo B begin to repeat). The computer program yielded the
following four cases for n = 1 and m > 0:

(m, k) € {(1,3),(3,7)}.

Since the values for k lie in the non-periodic set of remainders of powers
of 2 modulo B, we see that Kk = 1 or kK = 7. This gives us the solutions
(m,n,k) = (1,1,3) and (m,n, k) = (3,1,7). Furthermore, any other so-
lutions must have m =1 (mod B) or m = 3 (mod B). Since the smallest
values for m other than 1 or 3 are significantly too large to have a solution,
these are the only solutions for n = 1.

Lastly, we will examine rm = 1 and n > 3. This time, we use the mod-
ulus C = 26.34.17 for our computer check. Once more this becomes a finite
problem since 32! = 3° (mod C) and 22?2 = 27 (mod C); furthermore, 5
and 7 are the smallest powers of 3 and 2, respectively, where the remainders
begin to repeat. The only solution modulo C that the program generated
was (n, k) = (3,5). This yields the solution (m,n, k) = (1, 3,5). Since the
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powers on both 2 and 3 are in the non-periodic set of remainders of their
respective powers, there are no further solutions.
In conclusion, there are exactly five solutions to 5™ 4 3™ = 2, namely:

(m,n,k) € {(0,0,1), (0,1,2), (1,1,3), (3,1,7), (1,3,5)} .

Part (a) also solved by MICHEL BATAILLE, Rouen, France; ROY BARBARA, Lebanese
University, Fana/r, Lebanon; MERCE[)ES SANCHEZ BENITO, Universidad Complutense,
Madrid, Spain, OSCAR CIAURRI RAMIREZ, Universidad de La Rioja, Logroiio, Spain, and
MANUEL BENITO MUNOZ and EMILIO FERNANDEZ MORAL, IES Sagasta, Logrofio, Spain;
CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; RICHARD 1. HESS,
Rancho Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
JOEL SCHLOSBERG, Bayside, NY, USA; L1 ZHOU, Polk Community College, Winter Haven, FL,
USA; and the proposer.

Beasley conjectured that the equation in part (b) has exactly the five solutions which are
determined above.

The reason for the late featuring of this solution is that we wanted to have the computer
solution properly analyzed. We apologize for this delay. We would appreciate if our readers
could find a proof for the result which is independent of computer verification.

B WSS L W

3139. [2006 : 238, 240; 2007 : 242] Proposed by Michel Bataille, Rouen,
France.

2 2
Let € be the ellipse % + 12—2 —1 = 0. Two parallel tangents to ¢ intersect
a third tangent at M; (1, y1) and Mz(x2,y2). Show that the value of

v\ (L v
a2 b2 a? b2

is independent of the chosen tangents.

I1. Solution by ]J.A. Thas, Ghent University, Ghent, Belgium.

The desired result is a consequence of properties of projective coor-
dinates interpreted in the affine plane. Our conic defines a scalar product
between the points M; = (x1,y1) and M2 = (xz2,y2) by

T1T2 Yi1Yy2

(M, M) = o2 + b2 -1

There is likewise a scalar product defined by the dual conic (composed of the
tangents to the conic) between pairs of lines: if L; = [u;, v;, w;] represent
the lines u;x + v;y + w; = 0for i =1 and z = 2, then

[Ll, Lz] = a2u1u2 + b2’1)1'1)2 — wiwWws .

A pair of points or a pair of lines are conjugate if and only if their scalar
product is zero. One easily shows that the line joining M; to M, is tangent
to the conic if and only if

(My, My)(Ms, Ma) — (M1, M2)* = 0. M
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(See, for example, H.S.M. Coxeter, The Real Projective Plane, 3rd edition,
formula 12.76 on page 188, for the details.)

In this notation, we are required to show that (M, M;)(M,, M>) is
independent of the chosen tangents. We will show that, for all choices of the
three tangents, (M7, M,){(M,, M) = 1. In view of (1) above, we have only
to show that (M, M)2 = 1.

Consider the parallelogram formed by the given parallel tangents
together with the third tangent and the tangent parallel to it. Because the
three diagonals of any quadrilateral circumscribed about a conic form a self-
polar triangle (this is the dual of Theorem 6.43 on page 78 of the Coxeter book
cited above), the diagonals of our parallelogram, namely y;2 — z;y = 0 and
yox — T2y = 0, are conjugate. This tells us that

T1T2 Y1Y2

a? + b2 0.
as desired.
B e W N
3151. [2006 : 304, 306] Proposed by M2 Jests Villar Rubio, Santander,
Spain.

(@) Let r; < 0 < 72 < T3 be the real roots of 823 — 6z + v/3 = 0. Prove
that

2 _ 2 4 2 _ 2 4
ry = 4r; —4r, and ry = 4r; —4ry.

(b) Let s; < 0 < s3 < s3 be the real roots of 823 — 6z +1 = 0. Prove that

2 2 2 2 2 2
ri+s; =1, si+ry; =1, and rs+s; = 1.

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC, USA.

(@) Set x = sin@. The given equation 823 — 6x + v/3 = 0 may be
rewritten as

\/75 = —42% 4+ 3z = —4sin®0 + 3sinh = sin(30).

Then 30 =
the interval

[y

+ 27k or 360 = %’T + 2wk, for any integer k. Restricting 6 to
, 2m], we find that
w 2w 7w 8w 13w 14w
oS T 5 e et

0

—

Thus,

. 13w . 4m . T . 27
ry = SIHT = —Sln?, ry — s1n§, and r3 = sin=—.

Using the identity sin® 20 = 4sin? § — 4sin® 6, we have

. 227 .. 2T s 4T
rg = sin“ — = 4sin“ — —4sin” — = 47'3—47“31
9 9 9

and
2 . 24w .42_71'

. 2
r]{ = sin o = 4sm2§—4sm = 4r§—4r§.
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(b) Set © = cos@. The given equation 8z — 6z + 1 = 0 may be
rewritten as

1

= 42® —3x = 4cos®0 —3cosh = cos(30).

Then 30 = 27 + 2k or 360 = 2~ + 2wk, for any integer k. Restricting 6 to
the interval [0, 27], we find that

= {2_71' 4_7r 8_71' 10w 14w 167r}
9’9" 9’ 9’ 9’ 9 ’
Thus,

8w ™ 4w 2
S = cOS— = —cos—, Sy = cos—, and sz = cos —.
9 9 9 9

The desired result follows from the Pythagorean identity cos? 6 +sin?6 = 1
applied to the above values of r; and s;.

Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, Mallorca, Spain; DIONNE
BAILEY, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo,
TX, USA; ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE, Rouen,
France; FRANCISCO BELLOT ROSADO, 1.B. Emilio Ferrari, Valladolid, Spain; QUANG CAO
MINH, Nguyen Binh Khiem High School, Vinh Long, Vietnam; CHIP CURTIS, Missouri South-
ern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens,
Greece; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong
Kong, China; VEDULA N. MURTY, Dover, PA, USA; JOEL SCHLOSBERG, Bayside, NY, USA;
OLINA SIGURGEIRSDOTTIR, student, Auburn University, Montgomery, AL, USA; BIN ZHAO,
student, YunYuan HuaZhong University of Technology and Science, Wuhan, Hubei, China; and
the proposer. Most solutions were based on the identity for cos 30.

B e WSS D W

3152. [2006 : 304, 307] Proposed by Michel Bataille, Rouen, France.

n
Let 1, 2, ..., n (n > 2) be real numbers such that > z; = 0 and
=1
n n
>~ «? = 1. Find the minimum and maximum of ) |z;]|.

=1 =1

Essentially the same solution by Sefket Arslanagié¢, University of Sarajevo,
Sarajevo, Bosnia and Herzegovina; and Kee-Wai Lau, Hong Kong, China.

We have
n 2 n n n n n
(ZI%I) = Y @+ D lmillel > 14+ D> iy
=1 =1 =1 j=1 =1 j=1
j#i e
n 2 n
= 1+ (Zm,) —Zw? = 2.
i=1 1=1
Equality holds for ; = 1/v/2 = —axyand 3 = ¢4 = -+ = x, = O.

It follows that the minimum is /2.
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For the maximum, suppose that m of the z;'s are non-negative and
n — m are non-positive, for 1 < m < n. Without loss of generality, we
assume that x4, ..., x,, are non-negative and x,;, 41, . . ., €, are non-positive.
By Schwarz’s Inequality,

and

§ 2
Cl:z_

i=m-+1 i=m-+1

It follows that
2
— 2 = I - )
_izzlw <m+n—m> (;m1> m(n—m) (Z%)

Hence, 3° |z =2 3. @ < —=\/m(n —m)
ence, ;| = T, < —/m(n —m).
=1 ‘ i=1 t \/ﬁ
For any real number r, the quadratic function (r — =) has a maximum
r2/4 at x = r/2. Thus, for n = 2k, where k is a positive integer, we have

m(n —m) < k? and

[y
M:
8
[l
—
h
NE
8
~—

v

" 2k

Equality holdsfor 1 = w2 = -+ =2 = —xpy1 = -+ = —z, = 1/4/n.
For n = 2k + 1, where k is a positive integer,
m(n—m) < max{k(2k+1—-k),(k+1)2k+1—-k—-1)} = k(k+1).

Hence,

"o < BEEED

1=1

Equality holds for

L1 = Top = o0 = T = _k+1
L - 7k T\ k@E+1)

and T4l = *°° = Tp =

_\/+
(k+1)(2k+1)°

We conclude that the maximum is {/n %
n

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; PAUL BRACKEN,
University of Texas, Edinburg, TX, USA; CHIP CURTIS, Missouri Southern State University,
Joplin, MO, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; JOEL
SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; and
the proposer. There was one incorrect submission.
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3153. [2006 : 304, 307] Proposed by Michel Bataille, Rouen, France.
For which integers n does the equation
3zy — 1
z+y

= n

have a solution in integers = and y?

Essentially the same solution by Roy Barbara, Lebanese University, Fanar,
Lebanon; Brian D. Beasley, Presbyterian College, Clinton, SC, USA;
Kee-Wai Lau, Hong Kong, China; Joel Schlosberg, Bayside, NY, USA; and
Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let k be any integer. If n = 3k, then the given equation becomes
3zy — 3k(x + y) = 1, which has no solutions. If n = 3k + 1, then z = &
and y = —(3k% + k + 1) is a solution. If n = 3k — 1, then x = k and
y = 3k%? — k41 is a solution. Hence, the equation has a solution if and only
if n is not a multiple of 3.

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
CHARLES R. DIMINNIE, Angelo State Um'versjgy, San Angelo, TX, USA; RICHARD 1. HESS,
Rancho Palos Verdes, CA, USA; SALEM MALIKIC, student, Sarajevo College, Sarajevo, Bosnia

and Herzegovina; MICHAEL PARMENTER, Memorial University of Newfoundland, St. John’s,
NL; PANOS E. TSAOUSSOGLOU, Athens, Greece; and the proposer.

B e SN D W

3154 [2006 : 304, 307] Proposed by Challa K.S.N.M. Sankar, Andhra-
pradesh, India.

(@) If B > 1 is a real constant, determine the number of possible real
solutions of the equation

z— Blog,x = B8 —BInga.

(b) If @1 < a9 are two positive real solutions of the equation in (a), and
if 1 and x5 are any two real numbers satisfying a; < 7 < 2 < ay,
prove that, for all A suchthat0 < X\ < 1,

Alogy 1 + (1 — A)logy w2 > In(Azy + (1 — X)x2) .

Determine when equality occurs.

Solution by Sefket Arslanagié, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina, modified and expanded by the editor.

(a) Consider the function f(z) = = — Blog, ¢ — B3+ B1In 3 for x > 0.
We have f/(z) = 1 — 3/(x1n 2); whence, z = 3/(x In 2) is the only critical
value. Since f/(z) < 0for0 <z < 8/In2and f'(x) > 0forxz > 3/In2,
we see that f is decreasing on (0, 3/1n 2) and increasing on (8/In 2, co).
Thus, f has a relative minimum at x = 3/ In 2.
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Note that lim f(x) = oo and that

r—0+
lim f(z) = -8+ BB+ lim x(1—51"%) = 00,
since lim ﬁlo% = 0.

We now show that f(8/In2) < 0.

Since f(3/In2) = B/In2 — Blog,(3/In2) — B + B1In g3, it suffices
to show that 1/1In2 — log,(3/1n2) — 1 + In 3 < 0, which is equivalent in
succussion to

1— (In2)(logy(8/In2)) —In2 + (In2)(InB8) < O,
1—-In2—-—In(B/In2) + (In2)(InB8) < O,
1—-In2— (Ing—In(In2)) + (In2)(InB8) < O,
1—-In24+1In(ln2) — (1 -1In2)(InB) < O,

which is true since (1—In2)(In3) > 0and 1 —1In2+In(In2) < 0. Therefore,
f has exactly two real roots, a; and a3, such that 0 < oy < as. That s, the
given equation has exactly two real solutions.

(b) From part (a) we see that f(z) < 0 for all z € [a1, az], where
0<a; <fB/In2< as. Thus, log, z > (z/8) — 1+ In 3.
Since 0 < X < 1, it follows that

Alog, 1 + (1 — A) log, @
Ty T2
> A(——l—l—lnﬁ) +(1-=X) (——l—i-lnﬁ)

B B
1
= E()\ml—k(l—)\)wz)—l—i-lnﬁ. 1
Next we show that, for all ¢ > 0,
t—B8+pBInpg > Blnt. (2)

Letg(t) =t— 3+ BInB3 — Blnt. Then ¢g’(t) = 1 — 3/t showing thatt = 3
is the only critical value. Since g”(t) = 3/t?> > 0, we see that g(3) = 0 is a
relative as well as the absolute minimum of g. Hence, g(¢) > 0 forallt > 0
and (2) follows.

In particular, for t = Az; 4+ (1 — A\)z2, we obtain

Az + (1= A)zz —B+1InB8 > Bln(Azy + (1 — N)x2) . 3)
From (1) and (3), we then have
Alogy x1 + (1 — A)logy 2 > In(Azy + (1 — N)x2) .
Equality occurs if and only if 1 = a3, 22 = a2, and Aa; + (1 — Naz = 3,
which yields A = ;;%_fl. Since f(8) = B(InB — log, 3) < 0, we see that
o < B< % < o, which is consistent with the assumption 0 < X\ < 1.

Also solved by the proposer.
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3155. [2006 : 304, 307] Proposed by Virgil Nicula, Bucharest, Romania.

In AABC, let D, E, F be the intersections of the altitudes from A,
B, C to the sides BC, CA, AB, respectively. Let H be the orthocentre of
ANABC, let L be the intersection of AT and the line through B perpendicular
to BC, and let T be the intersection of BE and DF.

Show that BL = BC if and only if ZACB = 45°.

Solution by Michel Bataille, Rouen, France.

We modify the requirement of the problem to be:

Show that BL = BC if and only if ZACB = 45° or ZACB = 135°,
and that AT is the polar of C with respect to ~.

Note that B, F, H, and D lie on the circle v with diameter BH and
that AT is the polar with respect to v. We call L’ the point of intersection
of the perpendiculars to BC at B and to AC at C.

First, suppose that ZACB = 45° or ZACB = 135°. Then using the
facts that BE || CL’ and ZBCL’ = 45°, we see that ACBL’ and ABDH
are isosceles right triangles, with right angles at B and D, respectively. Let
U be the mid-point of CL’. Then, ZUBH = 90°, so that U B is tangent to ~
at B and the circle 4 = (BCL’) is orthogonal to «. Since CL’ is a diameter
of ~/, the points C and L’ are conjugate with respect to v. Hence, L’ is on
the polar AT of C, and thus, L = L’ and BL = BC.

A LL A
E
H L
B D
B D c
E
U
H
L L'
/ACB = 45° /ABC = 135°

Also solved by APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; and VACLAV KONECNY, Big
Rapids, M1, USA.

The following solvers only considered the case /ACB = 45°: SEFKET ARSLANAGIC,
University of Sarajevo, Sarajevo, Bosnia and Herzegovina; FRANCISCO BELLOT ROSADO,
1. B. Emilio Ferrari, Valladolid, Spain; CHIP CURTIS, Missouri Southern State University, Joplin,
MO, USA; GEOFFREY A. KANDALL, Hamden, CT, USA; SALEM MALIKIC, student, Sarajevo
College, Sarajevo, Bosnia and Herzegovina; D.]J. SMEENK, Zaltbommel, the Netherlands;
PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.
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3156. [2006 : 305, 307] Proposed by Virgil Nicula, Bucharest, Romania.

Let T be the circumcircle of AABC. Let M be an interior point on
the side AB, and let N be an interior point on the side AC. Let D be an
intersection point of M N with T'. Prove that

MB AC NC AB BC

MA DB NA DC| DA’

Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let P = ADNBC and Q = M DNBC. [ Editor’'s comment: Woo deals
explicitly with the case where D is opposite B on arc AC of the circumcircle,
and B lies between Q and C. With the use of directed distances and directed
angles, we can avoid special cases except when P or Q is at infinity; these
possibilities are easily handled using continuity arguments.] By Menelaus’
Theorem applied to the transversal QM D of ABAP and to the transversal
QND of ACAP,

BM BQ PD . CN cQ PD
MA QP DA NA QP DA’
Because APCA ~ APDB, we have

AC  PC

BD ~ PD’
similarly, APBA ~ APDC implies that

AB _ PB
CD PD
It follows that
BM-AC’ CN‘AB _ BQ‘PD-AC’ C’Q‘PD.AB
MA BD NA CD QP DA BD QP DA CD

BQ PD PC+CQ PD PB
QP DA PD ' QP DA PD
—~BQ-PC+CQ-PB

QP -DA
_ —BQ-PC+ (CB+ BQ)-(PC+ CB)
- QP -DA

_ CB-(PC+CB+ BQ)

o QP-DA

CB-PQ _ BC

QP-DA DA

as desired.
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Also solved by MICHEL BATAILLE, Rouen, France; APOSTOLIS K. DEMIS, Varvakeio
High School, Athgns, Greece; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
SALEM MALIKIC, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina; JOEL
SCHLOSBERG, Bayside, NY, USA; D.J. SMEENK, Zaltbommel, the Netherlands; and the
proposer.

Nicula provided a selection of familiar and not so familiar special cases of his result:

c a

e If BN N CM = G (the centroid), then

DB~ DC| DA’
1
e If BN N CM = I (the incentre), then | — — ——| = ——
DB DC DA
B C A
e If BN N CM = H (the orthocentre), then oS> _ co8 = | cos Al
DB DC DA
NN —

3157. [2006 : 305, 308] Proposed by Mihaly Bencze, Brasov, Romania.
Let p be a fixed odd prime number. Let a(n) denote the largest integer
k such that p* is an integral divisor of 1* . 22 . 33 ...n". Prove that

. a(n) 1
lim =

n—oo n2 - 2(p — ]_) ’

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

In order to get an idea of the behavior of a(n), we proceed very much
like Legendre in his reasoning for the exponent of p in the prime decompo-
sition of n!. The result then is

o = sfovnrs ) o (arr [3)
o (svase ) oo

o= B2 (3] )

j=1

In a more concise form,

where N(n) = [Inn/Inp|. We have

GG < BB =G G

Multiplying by p? yields

(5) <15 5 (3 e
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Thus,
N(n) N(n)
2 = pI n nz - 2 = pI n

n—oo n

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern
State University, Joplin, MO, USA; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; JOEL
SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; and
the proposer.

3158. [2006 : 305, 308] Proposed by Mihaly Bencze, Brasov, Romania.

Let E = {(z,y) € Nx N | « + y is a perfect square}, and let V(n) be
the size of the set {(z,y) € E | £ < n and y < n}, for n € N. Prove that

. N(@m) 4
n11—>n<>lon\/7_;, = g(\/i—l)

Solution by Joel Schlosberg, Bayside, NY, USA, modified by the editor.
For eachn € N and k € N, let ¢(n, k) be the number of integer pairs
(z,y)with1 <z, y <nand z+y = k. Then N(n) = Y ¢(n,i?).
=1

i=

To evaluate ¢(n, k), we first observe that if 1 < =z, y < n, then
2 < x+y < 2n. It follows that p(n,k) = 0 unless 2 < k < 2n. If
2 < k < n+1, then the equation z+y = k is satisfied by the pairs (1, k—1),
(2,k—2),...,(k—1,1); hence, p(n,k) =k — 1. If n+1 < k < 2n, then
the equation = + y = k is satisfied by (k —n,n), (k—n+1,n—-1), ...,
(n,k — n); hence, p(n,k) = 2n + 1 — k. Thus,

kE—1 if2<k<mn+1,
pn,k) = {2n+1—k ifn+1<k<2n,
0 otherwise.
Therefore, for each i € IN,
2 —1 if2<i<I,
o(n,i?) = {2n+1—1i2 if, < k< I,
0 otherwise,

where I = |[/n+ 1| and I, = {\/%J
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Now

oo I, Iz
N(n) = Y ¢(n,i®) = > @*—1)+ Y (2n+1-1i?)
=1 1=2

i=I,+1
I Iz
=Y @#-—hL+@n+1)I—TL)— >
=1 i=I1+1

11 12
= 2212—222+2n(12 —I1)+I2 —2I1
=1

=1
LI +1)(21 + 1) _ I(I2 +1)(212 + 1)
3 6

+2n(12 — Il) —+ I2 — 2_[1

- x/ﬁ-‘/f'z\/ﬁ_m'x/zﬁ_n'zmﬂn(mﬂ/ﬁ)*m")

= n\/ﬁ<§—2;/§+2\/§—2) + 0(n)
= SV (VE—1) +0m).
Thus,
]Z\(/":_l) - g(\/i—1)+o(%) :
and therefore,
Jim YO S (va-a),

as claimed.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE,
Rouen, France; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; RICHARD
I. HESS, Rancho Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

B e SN D W

3159. [2006 : 305, 308] Proposed by Mihaly Bencze, Brasov, Romania.
Let n be a positive integer, and let ~ be Euler’s constant. Prove that

_ 1
48n3

-
48(n +1)3°

1

v 24n

1 1 1
<ltgtto—m(nts+5) <v-
Solution by the proposer.

For each positive integer n, let

1 1 1 1 1
R R Ll R R
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Then 41 — =, = f(n), where

1 3 1
@) = o 1n(gE+2+24(ac-4-1))
1,1 1 1
+1n(w+§+m)+48(m+1)3_48a:3'

We have f/(z) > 0 for x > 0. [ Ed: Using a computer algebra system, we get

__ 26562°+100962°+150082*410836x°+3870x>+652x+37
() = “ 16m4(mf1)4(24m2—T-12m+1)(;4m2+60::£+37) #+2L.]  Furthermore,
lim f(x) = 0. Therefore, f(z) < 0 for all z > 0, which implies that the
T—r o0

sequence {x,}>° , is strictly decreasing. Since nlLrgo T, = -, we must have

x, > ~ for all n. This proves the left inequality.
For each positive integer n, let

1 1 1, 1 1
yn = 1 g bt —m(nd gt o)+ g
Then y,,+1 — yn = g(n), where
- 1 3 1
9@) = 33 1n<w+2+24(m+1))
1, 1 1 1
+ln(w+§+ﬂ)+48(m+2)3_48(m+1)3'

We have ¢g’(z) < 0 for z > 0. [ Ed: Using a computer algebra system, we get

'(ac) ___ 8864x”+172336x°%+42475202°+456204x* 1483110+ 2884922> 1 86997x+9472 ]
9 - 16x(xz+1)4(x+2)4(24x2+12x+1) (2422 +60x+37) -

Furthermore, lim g(x) = 0. Therefore, g(x) > 0 for all z > 0, which
T —r 00

shows that the sequence {y,}$ , is strictly increasing. Since lim y,, = ~,
we must have y,, < « for all n. This proves the right inequality.

Also solved by PAUL BRACKEN and N. NADEAU, University of Texas, Edinburg, TX, USA;
and WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria. There was one incomplete
solution.

NN —

3160. [2006 : 305, 308] Proposed by D.]. Smeenk, Zaltbommel, the Neth-
erlands.

Let AABC have altitude AD and orthocentre H. Let E be the mid-
point of AD and M the mid-point of BC.

(a) If AD = BC, prove that HM = HE.

(b) Is the converse of (a) true?
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1. A composite of similar solutions by Roy Barbara, Lebanese University,
Fanar, Lebanon; and Geoffrey A. Kandall, Hamden, CT, USA.

Dealing with parts (a) and (b) together, we prove that HM = HE
if and only if AD = BC. We introduce coordinates with D(0,0), E(0,1),
and A(0,2) on the y-axis, while B(b,0) and C(c,0) define the z-axis for
real numbers ¢ > b. It follows that M is the point (1(b + c),0) and the
line CH, passing through C and perpendicular to AB, has the equation
y = 1bx — bc. The y-intercept of CH is H (0, —3bc). We thus have

2 2 2 2
HM? —HE = (P3°) + 70— (1+7)
_ b2+c2_b_c_1
- 4 2

1 2 1 2 2
= —4((b—c) —4)——4(3(7 — AD?).
Thus, HM = HE if and only if BC = AD.

I1. A composite of similar solutions by Sefket Arslanagi¢, University of
Sarajevo, Sarajevo, Bosnia and Herzegovina; and Titu Zvonaru, Comanesti,
Romania.

Because AABD ~ ACHD (since /BAD = 90°—/ABD = /HCD),
AD BD
we deduce that == =

D — HD In terms of signed segments, this equality

becomes
DA-HD = DB-DC.

We therefore have

HM? - HE? = HD?+ DM? - HE?
HD? + (DB + BM)? — (HD + DE)?
HD? + (DB + 1BC)® — (HD + 1DA)*
3(BC? — AD?) — DA-HD + DB(DB + BC)
3(BC? - AD?*) - DA-HD+ DB -DC
3(BC? — AD?).
Thus, HM = HE if and only if AD = BC.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina (a second solution); MICHEL BATAILLE, Rouen, France; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio
High School, Athens, Greece; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
VACLAV KONECNY, Big Rapids, MI, USA (2 solutions); JOEL SCHLOSBERG, Bayside, NY,
USA; BOB SERKEY, Leonia, N], USA; PETER Y. WOO, Biola University, La Mirada, CA, USA;
and the proposer.

One of Konecny'’s solutions considered the family of all triangles ABC with fixed base
BC for which AD = BC. The locus of orthocentres H as A moves along the line parallel to
BC at the fixed distance of AD = BC is a parabola whose focus is the mid-point M of BC,
latus rectum is BC, and directrix is the locus of the mid-point E of AD. The equality of HM
and HE is then equivalent to a basic property of conics: From any point on a parabola, the
distance to the directrix equals the distance to the focus.
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3161. [2006 : 305, 308] Proposed by D.]. Smeenk, Zaltbommel, the Neth-
erlands.

Let D be a point on the side BC of AABC, and let P be an arbitrary
point on the segment AD. Let BP meet AC at E and CP meet AB at F'.

(a) If AD 1 BC, prove that /BDF = /CDE.

(b) Is the converse of (a) true?

Solution by Geoffrey A. Kandall, Hamden, CT, USA, modified by the editor.

Let £ be the line through vertex
A parallel to the side BC. Let DE
and DF meet £ at points G and H,
respectively. Let 1, 2, 3, 4, 5, and 6
denote the angles BDF, FDA, EDA,
CDE, AHD, and AGD, respectively.
Clearly, /5 = /1 and /6 = /4.

First we show that HA = AG.

Triangles AHF and BFD are similar,
which implies that 2—; = % Like-
wise, triangles AGE and CDE are similar, yielding g—i - bc Applying

AG
Ceva’'s Theorem to AABC, we get

AF BD CE HA BD DC HA

T FB DC EA  BD DC AG ~ AG
Thus, HA = AG.

(a) If AD 1 BC, then triangles DAH and DAG are congruent,
implying that /1 = /4.

(b) If Z1 = /4, then £5 = £6, which implies that ADGH is isosceles
(with DG = DH). The median DA in ADGH is therefore also the altitude
from D to GH. This makes AD L ¢ and thus also AD 1 BC.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE,
Rouen, France; FRANCISCO BELLOT ROSADO, I1.B. Emilio Ferrari, Valladolid, Spain; CHIP
CURTIS, Missouri Southern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS,
Varvakeio High School, Athens, Greece; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; VACLAV KONECN Y, Big Rapids, MI, USA; SALEM MALIKIC, student, Sarajevo College,
Sarajevo, Bosnia and Herzegovina; JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Bi-
ola University, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

Konecny and Malikic pointed out that part (a) of the problem is known; it had appeared,
in almost identical form, as the fifth problem of the Canadian Mathematical Olympiad in 1994
with solution published in Crux [1994 : 189]. Koneény also supplied an earlier reference
(A Survey of Geometry, Howard Eves, 1972, Allyn and Bacon, p.86).

Y WSS L W
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3162. [2006 : 306, 308] Proposed by Eckard Specht, Otto-von-Guericke
University, Magdeburg, Germany.

Determine all integer solutions (x, y) of the equation

z® +y" = 2004007

Solution by Kee-Wai Lau, Hong Kong, China.

We show that the equation has no integer solutions by considering
residues modulo 71.

Since 71 is a prime and (16,71) = 1, we have (16'4)7° = 1 (mod 71)
by Fermat's Little Theorem. Hence,

200497 = 16'°°7 = (16'*)7°(16%") = 16*" = 4096°
= 49° = 117649 = 23 =8 ((mod 71) .
With the help of a computer, we find that the quintic residues (mod 71)

are
0, 1, 20, 23, 26, 30, 32, 34, 37, 39, 41, 45, 48, 51, and 70

and the septic residues (mod 71) are
0,1, 5, 14, 17, 25, 46, 54, 57, 66, and 70.

It follows by tedious but straightforward calculations that the residues
of 2 + y” (mod 71) are precisely those k where 0 < k < 70 such that
k ¢ {8, 10, 11, 60, 61, 63}.

Since the residue 8 is missing, we conclude that the given equation has
no integer solutions.

Also solved (using essentially the same argument) by CHIP CURTIS, Missouri Southern
State University, Joplin, MO, USA; and the proposer. There was also an incomplete solution.
The proposer remarked that 71 is the smallest prime for which this proof works.

Nt —

3163. [2006 : 394, 396] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

n kz—i—n2kﬁ

k=1

Calculate
lim In <

Composite of virtually identical solutions by those solvers identified by an
asterisk beside their names in the list at the end.

n 2 2\ k an
Let Sn:1n<H <k:2"> ) . Then

k=1

1 & k? + n? 1.k
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a Riemann sum associated with the continuous function f(z) = = In(1 + z?)

and the regular partition {l, 3, cee, E} of the interval [0, 1].
n n n
Hence,
1 1 2 1 2
lim S, = / xIn(l + 2%)dx = —/ Inudu = —(ulnu — u)
n—oo 0 2 1 2

1

1 1
= 5((21112—2)—(—1)) = 5(—1+21nz).

Solved by *MICHEL BATAILLE, Rouen, France; *DIONNE BAILEY, ELSIE CAMPBELL,
and CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA; *MANUEL
BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ Logrofio, Spain; *CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; RICHARD 1. HESS, Rancho Palos Verdes,
CA, USA; *PHIL McCARTNEY, Northern Kentucky University, Highland Heights, KY, USA; JOEL
SCHLOSBERG, Bayside, NY, USA; *JOHN HAWKINS and DAVID R. STONE, Georgia South-
ern University, Statesboro, GA, USA; *ALEXANDROS SYGELAKIS, student, University of Crete,
Heraklion, Greece; *PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.
Two incorrect solutions were also received.
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